Zommiti Mohamed, Connil Nathalie, Tahrioui Ali, Groboillot Anne, Barbey Corinne, Konto-Ghiorghi Yoan, Lesouhaitier Olivier, Chevalier Sylvie, Feuilloley Marc G J
Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France.
Bioengineering (Basel). 2022 Nov 3;9(11):646. doi: 10.3390/bioengineering9110646.
Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.
几十年来,传统的体外培养系统和动物模型一直被用于研究生理学、营养或药物代谢,包括机械和生理病理学方面。然而,迫切需要综合测试策略(ITS)以及更复杂的平台和设备,以应对人类生理学的真正复杂性,并为临床研究和个性化医疗提供可靠的推断。芯片上的器官(OOC),也称为微生理系统,是一种先进的微流控细胞培养技术,它整合了细胞或组织与组织的界面、流体流动、机械信号和器官水平的生理学,并且已经被开发出来以填补体外实验模型与人类病理生理学之间的空白。广泛的OOC平台涉及细胞培养系统的小型化,并实现了各种新颖的实验技术。这些技术涵盖了从模拟生物物理力对细胞的独立作用到在多器官微生理系统中筛选新型药物,所有这些都在微型设备中进行。与活的生物系统一样,血管结构的发育是几乎所有芯片上的器官平台共有的显著特征。在此,我们提供了这项快速发展的先进技术的简要概述。我们将回顾OOC领域的前沿发展和进展,讨论其在生物医学领域的当前应用,并详细描述这项技术如何实现了复杂的多尺度和多功能基质及平台(在细胞和组织水平)的重建,从而使人们能够在体外深入了解人类疾病和感染的病理生理特征。