Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
Med Biol Eng Comput. 2024 Jul;62(7):1925-1957. doi: 10.1007/s11517-024-03062-7. Epub 2024 Mar 4.
Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform's essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.
器官芯片是包含多种细胞类型的组织或三维(3D)微型器官,已在微流控芯片上生成,以在受控条件下模拟不同细胞类型和器官的复杂结构和相互作用。传统的 2D 培养、动物模型和日益流行的 3D 培养之间存在几种形态和生理上的区别。另一方面,由于生理差异和种间代谢能力,动物模型可能无法准确模拟人类的毒性。芯片技术允许观察和理解转移过程中发生的变化。本研究旨在简要概述单器官和多器官芯片技术。本研究介绍了每个平台的基本优势和特点,并强调了单器官和多器官芯片技术的最新发展和应用。该研究还讨论了与这些模型相关的缺点和限制,包括对标准化程序的要求以及添加免疫细胞和其他复杂生物元件的困难。最后,全面的回顾表明,器官芯片方法具有研究器官功能和疾病的潜在途径。单器官和多器官芯片结构的进步可能会增加药物发现并减少对动物模型的依赖,从而为人类疾病提供更好的治疗方法。
Med Biol Eng Comput. 2024-7
Mater Horiz. 2023-10-30
Biosens Bioelectron. 2023-7-1
Molecules. 2019-2-14
EBioMedicine. 2021-4
Biosens Bioelectron. 2022-11-15
Prog Mol Biol Transl Sci. 2022
Pharmacol Res Perspect. 2024-2
Acc Chem Res. 2021-9-21
Front Bioeng Biotechnol. 2024-10-16
J Chemother. 2024-9-16
Biosensors (Basel). 2023-1-13
Polymers (Basel). 2022-4-20
Micromachines (Basel). 2022-3-10
Micromachines (Basel). 2021-9-15
Micromachines (Basel). 2021-3-10
Trends Biotechnol. 2021-8