Suppr超能文献

反复暴露于与太空探索相关的辐射和高氧环境导致的氧化性肺损伤。

Oxidative Lung Damage Resulting from Repeated Exposure to Radiation and Hyperoxia Associated with Space Exploration.

作者信息

Pietrofesa Ralph A, Turowski Jason B, Arguiri Evguenia, Milovanova Tatyana N, Solomides Charalambos C, Thom Stephen R, Christofidou-Solomidou Melpo

机构信息

Departments of Medicine, Pulmonary Allergy and Critical Care Division, and Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, USA.

Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, USA.

出版信息

J Pulm Respir Med. 2013 Sep 30;3(5).

Abstract

BACKGROUND

Spaceflight missions may require crewmembers to conduct Extravehicular Activities (EVA) for repair, maintenance or scientific purposes. Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours (5-8 hours), and may be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health and therefore, pose a threat to the success of the mission. We have developed a murine model of combined, hyperoxia and radiation exposure (double-hit) in the context of evaluating countermeasures to oxidative lung damage associated with space flight. In the current study, our objective was to characterize the early and chronic effects of repeated single and double-hit challenge on lung tissue using a novel murine model of repeated exposure to low-level total body radiation and hyperoxia. This is the first study of its kind evaluating lung damage relevant to space exploration in a rodent model.

METHODS

Mouse cohorts (n=5-15/group) were exposed to repeated: a) normoxia; b) >95% O (O); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O and IR (O+IR) given 3 times per week for 4 weeks. Lungs were evaluated for oxidative damage, active TGFβ1 levels, cell apoptosis, inflammation, injury, and fibrosis at 1, 2, 4, 8, 12, 16, and 20 weeks post-initiation of exposure.

RESULTS

Mouse cohorts exposed to all challenge conditions displayed decreased bodyweight compared to untreated controls at 4 and 8 weeks post-challenge initiation. Chronic oxidative lung damage to lipids (malondialdehyde levels), DNA (TUNEL, cleaved Caspase 3, cleaved PARP positivity) leading to apoptotic cell death and to proteins (nitrotyrosine levels) was elevated all treatment groups. Importantly, significant systemic oxidative stress was also noted at the late phase in mouse plasma, BAL fluid, and urine. Importantly, however, late oxidative damage across all parameters that we measured was significantly higher than controls in all cohorts but was exacerbated by the combined exposure to O and IR. Additionally, impaired levels of arterial blood oxygenation were noted in all exposure cohorts. Significant but transient elevation of lung tissue fibrosis (<0.05), determined by lung hydroxyproline content, was detected as early as 2 week in mice exposed to challenge conditions and persisted for 4-8 weeks only. Interestingly, active TGFβ1 levels in +BAL fluid was also transiently elevated during the exposure time only (1-4 weeks). Inflammation and lung edema/lung injury was also significantly elevated in all groups at both early and late time points, especially the double-hit group.

CONCLUSION

We have characterized significant, early and chronic lung changes consistent with oxidative tissue damage in our murine model of repeated radiation and hyperoxia exposure relevant to space travel. Lung tissue changes, detectable several months after the original exposure, include significant oxidative lung damage (lipid peroxidation, DNA damage and protein nitrosative stress) and increased pulmonary fibrosis. These findings, along with increased oxidative stress in diverse body fluids and the observed decreases in blood oxygenation levels in all challenge conditions (whether single or in combination), lead us to conclude that in our model of repeated exposure to oxidative stressors, chronic tissue changes are detected that persist even months after the exposure to the stressor has ended. This data will provide useful information in the design of countermeasures to tissue oxidative damage associated with space exploration.

摘要

背景

太空飞行任务可能要求宇航员进行舱外活动(EVA),以进行维修、维护或科学研究。为EVA做准备的预呼吸方案需要100%高氧暴露,可能持续数小时(5-8小时),并且可能每周重复2-3次。每次EVA都伴随着其他挑战,如全身低水平的宇宙/银河辐射暴露,这可能对宇航员健康构成威胁,进而对任务的成功构成威胁。在评估与太空飞行相关的氧化肺损伤的应对措施的背景下,我们开发了一种高氧和辐射联合暴露(双重打击)的小鼠模型。在当前研究中,我们的目标是使用一种重复暴露于低水平全身辐射和高氧的新型小鼠模型,来表征重复单次和双重打击挑战对肺组织的早期和慢性影响。这是同类研究中第一项在啮齿动物模型中评估与太空探索相关的肺损伤的研究。

方法

将小鼠队列(每组n = 5-15只)重复暴露于:a)常氧;b)>95%氧气(O₂);c)0.25Gy单次剂量γ辐射(IR);或d)O₂和IR的组合(O₂+IR),每周3次,共4周。在暴露开始后的1、2、4、8、12、16和20周,评估肺组织的氧化损伤、活性TGFβ1水平、细胞凋亡、炎症、损伤和纤维化情况。

结果

与未处理的对照组相比,在挑战开始后的4周和8周,所有暴露于挑战条件下的小鼠队列体重均下降。所有治疗组中,对脂质(丙二醛水平)、DNA(TUNEL、裂解的Caspase 3、裂解的PARP阳性)的慢性氧化肺损伤导致凋亡细胞死亡以及对蛋白质(硝基酪氨酸水平)的损伤均有所增加。重要的是,在小鼠血浆、BAL液和尿液的后期也观察到显著的全身氧化应激。然而,重要的是,我们测量的所有参数的后期氧化损伤在所有队列中均显著高于对照组,但在O₂和IR联合暴露组中更为严重。此外,在所有暴露队列中均观察到动脉血氧合水平受损。通过肺羟脯氨酸含量测定,早在暴露于挑战条件的小鼠中2周时就检测到肺组织纤维化水平显著但短暂升高(<0.05),并且仅持续4-8周。有趣的是,仅在暴露期间(1-4周),BAL液中的活性TGFβ1水平也短暂升高。在早期和晚期时间点,所有组的炎症和肺水肿/肺损伤也显著升高,尤其是双重打击组。

结论

在我们与太空旅行相关的重复辐射和高氧暴露的小鼠模型中,我们已经表征了与氧化组织损伤一致的显著的早期和慢性肺变化。在最初暴露数月后可检测到的肺组织变化包括显著的氧化肺损伤(脂质过氧化、DNA损伤和蛋白质亚硝化应激)和肺纤维化增加。这些发现,连同不同体液中氧化应激的增加以及在所有挑战条件下(无论是单一还是联合)观察到的血液氧合水平降低,使我们得出结论,在我们的重复暴露于氧化应激源的模型中,即使在暴露于应激源结束数月后仍可检测到持续的慢性组织变化。这些数据将为设计与太空探索相关的组织氧化损伤的应对措施提供有用信息。

相似文献

4
Radiation mitigating properties of the lignan component in flaxseed.
BMC Cancer. 2013 Apr 4;13:179. doi: 10.1186/1471-2407-13-179.
6
Space radiation-associated lung injury in a murine model.
Am J Physiol Lung Cell Mol Physiol. 2015 Mar 1;308(5):L416-28. doi: 10.1152/ajplung.00260.2014. Epub 2014 Dec 19.
7
Effects of long term normobaric hyperoxia exposure on lipopolysaccharide-induced lung injury.
Exp Lung Res. 2020 Feb-Mar;46(1-2):44-52. doi: 10.1080/01902148.2020.1725183. Epub 2020 Feb 18.

引用本文的文献

1
Oxidative Stress and the Kidney in the Space Environment.
Int J Mol Sci. 2018 Oct 15;19(10):3176. doi: 10.3390/ijms19103176.
6
Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission.
J Radiat Res. 2015 Nov;56(6):872-82. doi: 10.1093/jrr/rrv050. Epub 2015 Aug 17.
8
Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment.
Am J Respir Cell Mol Biol. 2015 Sep;53(3):422-35. doi: 10.1165/rcmb.2014-0339OC.
9
Radiation-induced lung injury and inflammation in mice: role of inducible nitric oxide synthase and surfactant protein D.
Toxicol Sci. 2015 Mar;144(1):27-38. doi: 10.1093/toxsci/kfu255. Epub 2014 Dec 30.
10
Space radiation-associated lung injury in a murine model.
Am J Physiol Lung Cell Mol Physiol. 2015 Mar 1;308(5):L416-28. doi: 10.1152/ajplung.00260.2014. Epub 2014 Dec 19.

本文引用的文献

1
Spaceflight environment induces mitochondrial oxidative damage in ocular tissue.
Radiat Res. 2013 Oct;180(4):340-50. doi: 10.1667/RR3309.1. Epub 2013 Sep 13.
2
The "normobaric oxygen paradox": a new tool for the anesthetist?
Minerva Anestesiol. 2014 Mar;80(3):366-72. Epub 2013 Sep 3.
3
Radiation mitigating properties of the lignan component in flaxseed.
BMC Cancer. 2013 Apr 4;13:179. doi: 10.1186/1471-2407-13-179.
5
Space radiation protection issues.
Health Phys. 2012 Nov;103(5):556-67. doi: 10.1097/HP.0b013e3182690caf.
6
Oxidative stress mediates radiation lung injury by inducing apoptosis.
Int J Radiat Oncol Biol Phys. 2012 Jun 1;83(2):740-8. doi: 10.1016/j.ijrobp.2011.08.005. Epub 2012 Jan 21.
7
Updates to astronaut radiation limits: radiation risks for never-smokers.
Radiat Res. 2011 Jul;176(1):102-14. doi: 10.1667/rr2540.1. Epub 2011 May 16.
8
Analysis of white blood cell counts in mice after gamma- or proton-radiation exposure.
Radiat Res. 2011 Aug;176(2):170-6. doi: 10.1667/RR2413.1. Epub 2011 Apr 8.
9
Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries.
J Appl Physiol (1985). 2011 Feb;110(2):340-51. doi: 10.1152/japplphysiol.00811.2010. Epub 2010 Oct 21.
10
Inflammatory alterations in a novel combination model of blunt chest trauma and hemorrhagic shock.
J Trauma. 2011 Jan;70(1):189-96. doi: 10.1097/TA.0b013e3181d7693c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验