Suppr超能文献

动态贝叶斯网络预测 ICU 收治患者器官衰竭的序列。

Dynamic Bayesian Networks to predict sequences of organ failures in patients admitted to ICU.

机构信息

Anesthesiology, Intensive Care and Pain Therapy Centre, University of Verona, Department of Surgical Science, Italy.

Department of Clinical and Biological Sciences, University of Torino, Italy.

出版信息

J Biomed Inform. 2014 Apr;48:106-13. doi: 10.1016/j.jbi.2013.12.008. Epub 2013 Dec 19.

Abstract

Multi Organ Dysfunction Syndrome (MODS) represents a continuum of physiologic derangements and is the major cause of death in the Intensive Care Unit (ICU). Scoring systems for organ failure have become an integral part of critical care practice and play an important role in ICU-based research by tracking disease progression and facilitating patient stratification based on evaluation of illness severity during ICU stay. In this study a Dynamic Bayesian Network (DBN) was applied to model SOFA severity score changes in 79 adult critically ill patients consecutively admitted to the general ICU of the Sant'Andrea University hospital (Rome, Italy) from September 2010 to March 2011, with the aim to identify the most probable sequences of organs failures in the first week after the ICU admission. Approximately 56% of patients were admitted into the ICU with lung failure and about 27% of patients with heart failure. Results suggest that, given the first organ failure at the ICU admission, a sequence of organ failures can be predicted with a certain degree of probability. Sequences involving heart, lung, hematologic system and liver turned out to be the more likely to occur, with slightly different probabilities depending on the day of the week they occur. DBNs could be successfully applied for modeling temporal systems in critical care domain. Capability to predict sequences of likely organ failures makes DBNs a promising prognostic tool, intended to help physicians in undertaking therapeutic decisions in a patient-tailored approach.

摘要

多器官功能障碍综合征(MODS)代表了一系列生理紊乱,是重症监护病房(ICU)死亡的主要原因。器官衰竭评分系统已成为重症监护实践的重要组成部分,通过跟踪疾病进展并根据 ICU 期间疾病严重程度的评估促进患者分层,在 ICU 为基础的研究中发挥了重要作用。在这项研究中,应用动态贝叶斯网络(DBN)对 2010 年 9 月至 2011 年 3 月连续入住意大利罗马 Sant'Andrea 大学医院普通 ICU 的 79 名成年危重病患者的 SOFA 严重程度评分变化进行建模,目的是确定 ICU 入院后第一周最可能发生的器官衰竭序列。大约 56%的患者因肺部衰竭入住 ICU,约 27%的患者因心力衰竭入住 ICU。结果表明,根据 ICU 入院时的第一个器官衰竭,可以以一定的概率预测器官衰竭的序列。涉及心脏、肺、血液系统和肝脏的器官衰竭序列发生的可能性较大,但由于发生的日期不同,其发生的概率略有不同。DBN 可成功应用于重症监护领域的时间系统建模。预测可能发生的器官衰竭序列的能力使 DBN 成为一种有前途的预后工具,旨在帮助医生根据患者的具体情况做出治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验