Suppr超能文献

一种无需预先定义结局即可预测器官衰竭关联的动态贝叶斯网络模型。

A dynamic Bayesian network model for predicting organ failure associations without predefining outcomes.

机构信息

Dipartimento di Scienze Medico-Chirurgiche e Medicina Traslazionale, Università degli studi di Roma Sapienza, Ospedale Sant'Adrea, Rome, Italy.

Laboratorio di Clinical Data Science, Dipartimento di Salute Pubblica, Istituto di Ricerche farmacologiche Mario Negri IRCCS, Ranica (BG), Italy.

出版信息

PLoS One. 2021 Apr 28;16(4):e0250787. doi: 10.1371/journal.pone.0250787. eCollection 2021.

Abstract

Critical care medicine has been a field for Bayesian networks (BNs) application for investigating relationships among failing organs. Criticisms have been raised on using mortality as the only outcome to determine the treatment efficacy. We aimed to develop a dynamic BN model for detecting interrelationships among failing organs and their progression, not predefining outcomes and omitting hierarchization of organ interactions. We collected data from 850 critically ill patients from the national database used in many intensive care units. We considered as nodes the organ failure assessed by a score as recorded daily. We tested several possible DBNs and used the best bootstrapping results for calculating the strength of arcs and directions. The network structure was learned using a hill climbing method. The parameters of the local distributions were fitted with a maximum of the likelihood algorithm. The network that best satisfied the accuracy requirements included 15 nodes, corresponding to 5 variables measured at three times: ICU admission, second and seventh day of ICU stay. From our findings some organ associations had probabilities higher than 50% to arise at ICU admittance or in the following days persisting over time. Our study provided a network model predicting organ failure associations and their evolution over time. This approach has the potential advantage of detecting and comparing the effects of treatments on organ function.

摘要

危重病医学一直是贝叶斯网络(BNs)应用的一个领域,用于研究衰竭器官之间的关系。有人批评仅使用死亡率作为唯一结局来确定治疗效果。我们旨在开发一种动态 BN 模型,用于检测衰竭器官及其进展之间的相互关系,而不是预先定义结局和省略器官相互作用的层次化。我们从许多重症监护病房使用的国家数据库中收集了 850 名危重病患者的数据。我们将器官衰竭评分评估作为节点,每天记录一次。我们测试了几种可能的 DBN,并使用最佳的自举结果来计算弧和方向的强度。使用爬山法学习网络结构。局部分布的参数使用最大似然算法进行拟合。满足准确性要求的最佳网络包括 15 个节点,对应于 ICU 入院时、ICU 入住的第二天和第七天测量的 5 个变量。从我们的研究结果中可以看出,一些器官关联在 ICU 入院时或在随后的几天内出现的概率高于 50%,并且随着时间的推移而持续存在。我们的研究提供了一种预测器官衰竭关联及其随时间演变的网络模型。这种方法具有检测和比较治疗对器官功能影响的潜在优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4940/8081190/2c94a7aa310e/pone.0250787.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验