Suppr超能文献

用于预测危重症创伤患者生理变化、器官功能障碍和死亡风险的动态贝叶斯网络。

Dynamic Bayesian network for predicting physiological changes, organ dysfunctions and mortality risk in critical trauma patients.

机构信息

Department of Health Statistics, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, China.

Institute of Military Health Management, Naval Medical University, Shanghai, China.

出版信息

BMC Med Inform Decis Mak. 2022 May 3;22(1):119. doi: 10.1186/s12911-022-01803-y.

Abstract

BACKGROUND

Critical trauma patients are particularly prone to increased mortality risk; hence, an accurate prediction of their conditions enables early identification of patients' mortality status. Thus, we aimed to develop and validate a real-time prediction model for physiological changes, organ dysfunctions and mortality risk in critical trauma patients.

METHODS

We used Dynamic Bayesian Networks (DBNs) to model complicated relationships of physiological variables across time slices, accessing data of trauma patients from the Medical Information Mart for Intensive Care database (MIMIC-III) (n = 2915) and validated with patients' data from ICU admissions at the Changhai Hospital (ICU-CH) (n = 1909). The DBN model's evaluation included the predictive ability of physiological changes, organ dysfunctions and mortality risk.

RESULTS

Our DBN model included two static variables (age and sex) and 18 dynamic physiological variables. The differences in ratios between the real values and the 24- and 48-h predicted values of most physiological variables were within 5% in the two datasets. The accuracy of our DBN model for predicting renal, hepatic, cardiovascular and hematologic dysfunctions was more than 0.8.The calculated area under the curve (AUC) from receiver operating characteristic curves and 95% confidence interval for predicting the 24- and 48-h mortality risk were 0.977 (0.967-0.988) and 0.958 (0.945-0.971) in the MIMIC-III and 0.967 (0.947-0.987) and 0.946 (0.925-0.967) in ICU-CH.

CONCLUSIONS

A DBN is a promising method for predicting medical temporal data such as trauma patients' mortality risk, demonstrated by high AUC scores and validation by a real-life ICU scenario; thus, our DBN prediction model can be used as a real-time tool to predict physiological changes, organ dysfunctions and mortality risk during ICU admissions.

摘要

背景

危重症创伤患者的死亡风险特别高;因此,准确预测其病情有助于早期识别患者的死亡状态。因此,我们旨在开发和验证一种用于实时预测危重症创伤患者生理变化、器官功能障碍和死亡风险的预测模型。

方法

我们使用动态贝叶斯网络(DBNs)来模拟生理变量在时间切片上的复杂关系,从医疗信息集市重症监护数据库(MIMIC-III)(n=2915)中获取创伤患者的数据,并在长海医院重症监护病房(ICU-CH)(n=1909)的患者数据中进行验证。DBN 模型的评估包括生理变化、器官功能障碍和死亡风险的预测能力。

结果

我们的 DBN 模型包括两个静态变量(年龄和性别)和 18 个动态生理变量。在两个数据集,大多数生理变量的真实值与 24 小时和 48 小时预测值之间的差异率在 5%以内。我们的 DBN 模型预测肾、肝、心血管和血液系统功能障碍的准确率超过 0.8。从接受者操作特征曲线计算出的曲线下面积(AUC)和 24 小时和 48 小时死亡风险的 95%置信区间分别为 0.977(0.967-0.988)和 0.958(0.945-0.971)在 MIMIC-III 中,0.967(0.947-0.987)和 0.946(0.925-0.967)在 ICU-CH 中。

结论

DBN 是一种有前途的预测医学时间序列数据的方法,例如创伤患者的死亡风险,高 AUC 分数和真实 ICU 场景的验证证明了这一点;因此,我们的 DBN 预测模型可以用作实时工具,预测 ICU 入住期间的生理变化、器官功能障碍和死亡风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81d1/9063308/a6e7d240f97c/12911_2022_1803_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验