Anderson Ariana, Douglas Pamela K, Kerr Wesley T, Haynes Virginia S, Yuille Alan L, Xie Jianwen, Wu Ying Nian, Brown Jesse A, Cohen Mark S
Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.
Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.
Neuroimage. 2014 Nov 15;102 Pt 1:207-19. doi: 10.1016/j.neuroimage.2013.12.015. Epub 2013 Dec 19.
In the multimodal neuroimaging framework, data on a single subject are collected from inherently different sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information each source provides is not independent; a subset of features from each modality maps to one or more common latent dimensions, which can be interpreted using generative models. These latent dimensions, or "topics," provide a sparse summary of the generative process behind the features for each individual. Topic modeling, an unsupervised generative model, has been used to map seemingly disparate features to a common domain. We use Non-Negative Matrix Factorization (NMF) to infer the latent structure of multimodal ADHD data containing fMRI, MRI, phenotypic and behavioral measurements. We compare four different NMF algorithms and find that the sparsest decomposition is also the most differentiating between ADHD and healthy patients. We identify dimensions that map to interpretable, recognizable dimensions such as motion, default mode network activity, and other such features of the input data. For example, structural and functional graph theory features related to default mode subnetworks clustered with the ADHD-Inattentive diagnosis. Structural measurements of the default mode network (DMN) regions such as the posterior cingulate, precuneus, and parahippocampal regions were all related to the ADHD-Inattentive diagnosis. Ventral DMN subnetworks may have more functional connections in ADHD-I, while dorsal DMN may have less. ADHD topics are dependent upon diagnostic site, suggesting diagnostic differences across geographic locations. We assess our findings in light of the ADHD-200 classification competition, and contrast our unsupervised, nominated topics with previously published supervised learning methods. Finally, we demonstrate the validity of these latent variables as biomarkers by using them for classification of ADHD in 730 patients. Cumulatively, this manuscript addresses how multimodal data in ADHD can be interpreted by latent dimensions.
在多模态神经成像框架中,关于单个受试者的数据是从本质上不同的来源收集的,如功能磁共振成像(fMRI)、结构磁共振成像、行为和/或表型信息。每个来源提供的信息并非相互独立;每个模态的特征子集映射到一个或多个共同的潜在维度,这些维度可以使用生成模型进行解释。这些潜在维度,即“主题”,为每个个体的特征背后的生成过程提供了一个稀疏的总结。主题建模是一种无监督生成模型,已被用于将看似不同的特征映射到一个共同的领域。我们使用非负矩阵分解(NMF)来推断包含功能磁共振成像、磁共振成像、表型和行为测量的多模态注意力缺陷多动障碍(ADHD)数据的潜在结构。我们比较了四种不同的NMF算法,发现最稀疏的分解在ADHD患者和健康患者之间也是最具区分性的。我们识别出映射到可解释、可识别维度的维度,如运动、默认模式网络活动以及输入数据的其他此类特征。例如,与默认模式子网络相关的结构和功能图论特征与注意力不集中型ADHD诊断聚类在一起。默认模式网络(DMN)区域(如后扣带回、楔前叶和海马旁区域)的结构测量都与注意力不集中型ADHD诊断相关。腹侧DMN子网络在注意力不集中型ADHD中可能有更多的功能连接,而背侧DMN可能较少。ADHD主题取决于诊断地点,表明不同地理位置存在诊断差异。我们根据ADHD-200分类竞赛评估我们的发现,并将我们的无监督提名主题与先前发表 的监督学习方法进行对比。最后,我们通过将这些潜在变量用于730名患者的ADHD分类来证明这些潜在变量作为生物标志物的有效性。总体而言,本文阐述了ADHD中的多模态数据如何通过潜在维度进行解释。