Suppr超能文献

多模态磁共振成像(MRI)、功能磁共振成像(fMRI)和表型数据的非负矩阵分解揭示了注意力缺陷多动障碍(ADHD)默认模式子网的差异变化。

Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD.

作者信息

Anderson Ariana, Douglas Pamela K, Kerr Wesley T, Haynes Virginia S, Yuille Alan L, Xie Jianwen, Wu Ying Nian, Brown Jesse A, Cohen Mark S

机构信息

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.

出版信息

Neuroimage. 2014 Nov 15;102 Pt 1:207-19. doi: 10.1016/j.neuroimage.2013.12.015. Epub 2013 Dec 19.

Abstract

In the multimodal neuroimaging framework, data on a single subject are collected from inherently different sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information each source provides is not independent; a subset of features from each modality maps to one or more common latent dimensions, which can be interpreted using generative models. These latent dimensions, or "topics," provide a sparse summary of the generative process behind the features for each individual. Topic modeling, an unsupervised generative model, has been used to map seemingly disparate features to a common domain. We use Non-Negative Matrix Factorization (NMF) to infer the latent structure of multimodal ADHD data containing fMRI, MRI, phenotypic and behavioral measurements. We compare four different NMF algorithms and find that the sparsest decomposition is also the most differentiating between ADHD and healthy patients. We identify dimensions that map to interpretable, recognizable dimensions such as motion, default mode network activity, and other such features of the input data. For example, structural and functional graph theory features related to default mode subnetworks clustered with the ADHD-Inattentive diagnosis. Structural measurements of the default mode network (DMN) regions such as the posterior cingulate, precuneus, and parahippocampal regions were all related to the ADHD-Inattentive diagnosis. Ventral DMN subnetworks may have more functional connections in ADHD-I, while dorsal DMN may have less. ADHD topics are dependent upon diagnostic site, suggesting diagnostic differences across geographic locations. We assess our findings in light of the ADHD-200 classification competition, and contrast our unsupervised, nominated topics with previously published supervised learning methods. Finally, we demonstrate the validity of these latent variables as biomarkers by using them for classification of ADHD in 730 patients. Cumulatively, this manuscript addresses how multimodal data in ADHD can be interpreted by latent dimensions.

摘要

在多模态神经成像框架中,关于单个受试者的数据是从本质上不同的来源收集的,如功能磁共振成像(fMRI)、结构磁共振成像、行为和/或表型信息。每个来源提供的信息并非相互独立;每个模态的特征子集映射到一个或多个共同的潜在维度,这些维度可以使用生成模型进行解释。这些潜在维度,即“主题”,为每个个体的特征背后的生成过程提供了一个稀疏的总结。主题建模是一种无监督生成模型,已被用于将看似不同的特征映射到一个共同的领域。我们使用非负矩阵分解(NMF)来推断包含功能磁共振成像、磁共振成像、表型和行为测量的多模态注意力缺陷多动障碍(ADHD)数据的潜在结构。我们比较了四种不同的NMF算法,发现最稀疏的分解在ADHD患者和健康患者之间也是最具区分性的。我们识别出映射到可解释、可识别维度的维度,如运动、默认模式网络活动以及输入数据的其他此类特征。例如,与默认模式子网络相关的结构和功能图论特征与注意力不集中型ADHD诊断聚类在一起。默认模式网络(DMN)区域(如后扣带回、楔前叶和海马旁区域)的结构测量都与注意力不集中型ADHD诊断相关。腹侧DMN子网络在注意力不集中型ADHD中可能有更多的功能连接,而背侧DMN可能较少。ADHD主题取决于诊断地点,表明不同地理位置存在诊断差异。我们根据ADHD-200分类竞赛评估我们的发现,并将我们的无监督提名主题与先前发表 的监督学习方法进行对比。最后,我们通过将这些潜在变量用于730名患者的ADHD分类来证明这些潜在变量作为生物标志物的有效性。总体而言,本文阐述了ADHD中的多模态数据如何通过潜在维度进行解释。

相似文献

1
Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD.
Neuroimage. 2014 Nov 15;102 Pt 1:207-19. doi: 10.1016/j.neuroimage.2013.12.015. Epub 2013 Dec 19.
5
A general prediction model for the detection of ADHD and Autism using structural and functional MRI.
PLoS One. 2018 Apr 17;13(4):e0194856. doi: 10.1371/journal.pone.0194856. eCollection 2018.
6
Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques.
Neuroimage Clin. 2020;26:102238. doi: 10.1016/j.nicl.2020.102238. Epub 2020 Mar 7.
7
BrainNET: Inference of Brain Network Topology Using Machine Learning.
Brain Connect. 2020 Oct;10(8):422-435. doi: 10.1089/brain.2020.0745. Epub 2020 Oct 8.
9
Disrupted network architecture of the resting brain in attention-deficit/hyperactivity disorder.
Hum Brain Mapp. 2014 Sep;35(9):4693-705. doi: 10.1002/hbm.22504. Epub 2014 Mar 25.
10
Inter-hemispherical asymmetry in default-mode functional connectivity and BAIAP2 gene are associated with anger expression in ADHD adults.
Psychiatry Res Neuroimaging. 2017 Nov 30;269:54-61. doi: 10.1016/j.pscychresns.2017.09.004. Epub 2017 Sep 12.

引用本文的文献

2
Factorized binary search: Change point detection in the network structure of multivariate high-dimensional time series.
Imaging Neurosci (Camb). 2025 Apr 17;3. doi: 10.1162/imag_a_00520. eCollection 2025.
6
Temporal Anomaly Detection in Attention-Deficit/Hyperactivity Disorder Using Recurrent Neural Networks.
Cureus. 2024 Dec 27;16(12):e76496. doi: 10.7759/cureus.76496. eCollection 2024 Dec.
9
Demixing fluorescence time traces transmitted by multimode fibers.
Nat Commun. 2024 Jul 26;15(1):6286. doi: 10.1038/s41467-024-50306-z.

本文引用的文献

1
Functional connectivity of substantia nigra and ventral tegmental area: maturation during adolescence and effects of ADHD.
Cereb Cortex. 2014 Apr;24(4):935-44. doi: 10.1093/cercor/bhs382. Epub 2012 Dec 12.
2
Making data sharing work: the FCP/INDI experience.
Neuroimage. 2013 Nov 15;82:683-91. doi: 10.1016/j.neuroimage.2012.10.064. Epub 2012 Oct 30.
3
ADHD diagnosis from multiple data sources with batch effects.
Front Syst Neurosci. 2012 Oct 8;6:70. doi: 10.3389/fnsys.2012.00070. eCollection 2012.
4
ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements.
Front Syst Neurosci. 2012 Sep 28;6:69. doi: 10.3389/fnsys.2012.00069. eCollection 2012.
5
Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies.
Am J Psychiatry. 2012 Oct;169(10):1038-55. doi: 10.1176/appi.ajp.2012.11101521.
6
Classification of ADHD children through multimodal magnetic resonance imaging.
Front Syst Neurosci. 2012 Sep 3;6:63. doi: 10.3389/fnsys.2012.00063. eCollection 2012.
7
Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging.
Front Syst Neurosci. 2012 Aug 30;6:61. doi: 10.3389/fnsys.2012.00061. eCollection 2012.
8
Recovery of the default mode network after demanding neurofeedback training occurs in spatio-temporally segregated subnetworks.
Neuroimage. 2012 Dec;63(4):1775-81. doi: 10.1016/j.neuroimage.2012.08.061. Epub 2012 Aug 30.
9
Insights into multimodal imaging classification of ADHD.
Front Syst Neurosci. 2012 Aug 16;6:59. doi: 10.3389/fnsys.2012.00059. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验