Suppr超能文献

噻唑/噁唑修饰型微菌素脱氢酶的酶促加工调控。

Orchestration of enzymatic processing by thiazole/oxazole-modified microcin dehydrogenases.

机构信息

Department of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology; University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

Biochemistry. 2014 Jan 21;53(2):413-22. doi: 10.1021/bi401529y. Epub 2014 Jan 7.

Abstract

Thiazole/oxazole-modified microcins (TOMMs) comprise a structurally diverse family of natural products with varied bioactivities linked by the presence of posttranslationally installed thiazol(in)e and oxazol(in)e heterocycles. The detailed investigation of the TOMM biosynthetic enzymes from Bacillus sp. Al Hakam (Balh) has provided significant insight into heterocycle biosynthesis. Thiazoles and oxazoles are installed by the successive action of an ATP-dependent cyclodehydratase (C- and D-protein) and a FMN-dependent dehydrogenase (B-protein), which are responsible for azoline formation and azoline oxidation, respectively. Although several studies have focused on the mechanism of azoline formation, many details regarding the role of the dehydrogenase (B-protein) in overall substrate processing remain unknown. In this work, we evaluated the involvement of the dehydrogenase in determining the order of ring formation as well as the promiscuity of the Balh and microcin B17 cyclodehydratases to accept a panel of noncognate dehydrogenases. In support of the observed promiscuity, a fluorescence polarization assay was utilized to measure binding of the dehydrogenase to the cyclodehydratase using the intrinsic fluorescence of the FMN cofactor. Ultimately, the noncognate dehydrogenases were shown to possess cyclodehydratase-independent activity. A previous study identified a conserved Lys-Tyr motif to be important for dehydrogenase activity. Using the tools developed in this study, the Lys-Tyr motif was shown neither to alter complex formation with the cyclodehydratase nor the reduction potential. Taken together with the known crystal structure of a homologue, our data suggest that the Lys-Tyr motif is of catalytic importance. Overall, this study provides a greater level of insight into the complex orchestration of enzymatic activity during TOMM biosynthesis.

摘要

噻唑/噁唑修饰的微菌素 (TOMM) 是一类结构多样的天然产物家族,具有不同的生物活性,其结构通过翻译后安装的噻唑(in)和噁唑(in)杂环连接。对 Bacillus sp. Al Hakam (Balh) 的 TOMM 生物合成酶的详细研究为杂环生物合成提供了重要的见解。噻唑和噁唑通过依赖 ATP 的环脱水酶(C 和 D 蛋白)和依赖 FMN 的脱氢酶(B 蛋白)的连续作用进行安装,它们分别负责氮唑的形成和氮唑的氧化。尽管已有几项研究集中在氮唑形成的机制上,但关于脱氢酶(B 蛋白)在整个底物处理中的作用的许多细节仍然未知。在这项工作中,我们评估了脱氢酶在确定环形成顺序以及 Balh 和微菌素 B17 环脱水酶接受一系列非同源脱氢酶的混杂性中的作用。支持观察到的混杂性,荧光偏振测定法用于使用 FMN 辅因子的固有荧光测量脱氢酶与环脱水酶的结合。最终,非同源脱氢酶被证明具有独立于环脱水酶的活性。先前的研究确定保守的 Lys-Tyr 基序对脱氢酶活性很重要。使用本研究中开发的工具,该基序既不会改变与环脱水酶的复合物形成,也不会改变还原电位。结合已知的同源物晶体结构,我们的数据表明 Lys-Tyr 基序对催化很重要。总的来说,这项研究提供了对 TOMM 生物合成中酶活性复杂协调的更深入了解。

相似文献

1
Orchestration of enzymatic processing by thiazole/oxazole-modified microcin dehydrogenases.
Biochemistry. 2014 Jan 21;53(2):413-22. doi: 10.1021/bi401529y. Epub 2014 Jan 7.
2
Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products.
J Am Chem Soc. 2015 Jun 24;137(24):7672-7. doi: 10.1021/jacs.5b04682. Epub 2015 Jun 12.
3
Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase.
J Am Chem Soc. 2012 Mar 21;134(11):5309-16. doi: 10.1021/ja211675n. Epub 2012 Mar 8.
4
The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
BMC Genomics. 2015 Oct 13;16:778. doi: 10.1186/s12864-015-2008-0.
5
Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis.
Nat Chem Biol. 2014 Oct;10(10):823-9. doi: 10.1038/nchembio.1608. Epub 2014 Aug 17.
6
Insights into the mechanism of peptide cyclodehydrations achieved through the chemoenzymatic generation of amide derivatives.
J Am Chem Soc. 2013 Jun 12;135(23):8692-701. doi: 10.1021/ja4029507. Epub 2013 May 30.
7
Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates.
Curr Opin Chem Biol. 2011 Jun;15(3):369-78. doi: 10.1016/j.cbpa.2011.02.027. Epub 2011 Mar 21.

引用本文的文献

1
Cyclodipeptide oxidase is an enzyme filament.
Nat Commun. 2024 Apr 27;15(1):3574. doi: 10.1038/s41467-024-48030-9.
2
Enterolyin S, a Polythiazole-containing Hemolytic Peptide from Enterococcus caccae.
Chembiochem. 2024 Jun 17;25(12):e202400212. doi: 10.1002/cbic.202400212. Epub 2024 May 24.
3
Uncovering the diversity and distribution of biosynthetic gene clusters of prochlorosins and other putative RiPPs in marine strains.
Microbiol Spectr. 2024 Jan 11;12(1):e0361123. doi: 10.1128/spectrum.03611-23. Epub 2023 Dec 13.
6
Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature.
Chem Sci. 2021 Aug 2;12(35):11769-11778. doi: 10.1039/d1sc01456k. eCollection 2021 Sep 15.
7
The microbiome-shaping roles of bacteriocins.
Nat Rev Microbiol. 2021 Nov;19(11):726-739. doi: 10.1038/s41579-021-00569-w. Epub 2021 Jun 1.
8
Posttranslational chemical installation of azoles into translated peptides.
Nat Commun. 2021 Jan 29;12(1):696. doi: 10.1038/s41467-021-20992-0.
9
New developments in RiPP discovery, enzymology and engineering.
Nat Prod Rep. 2021 Jan 1;38(1):130-239. doi: 10.1039/d0np00027b. Epub 2020 Sep 16.
10
Minimal lactazole scaffold for in vitro thiopeptide bioengineering.
Nat Commun. 2020 May 8;11(1):2272. doi: 10.1038/s41467-020-16145-4.

本文引用的文献

1
The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction.
Angew Chem Int Ed Engl. 2013 Dec 23;52(52):13991-6. doi: 10.1002/anie.201306302. Epub 2013 Nov 8.
2
Structural and functional insight into an unexpectedly selective N-methyltransferase involved in plantazolicin biosynthesis.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12954-9. doi: 10.1073/pnas.1306101110. Epub 2013 Jul 22.
3
Engineering unnatural variants of plantazolicin through codon reprogramming.
ACS Chem Biol. 2013 Sep 20;8(9):1998-2008. doi: 10.1021/cb4003392. Epub 2013 Jul 3.
4
Insights into the mechanism of peptide cyclodehydrations achieved through the chemoenzymatic generation of amide derivatives.
J Am Chem Soc. 2013 Jun 12;135(23):8692-701. doi: 10.1021/ja4029507. Epub 2013 May 30.
5
Structures of cyanobactin maturation enzymes define a family of transamidating proteases.
Chem Biol. 2012 Nov 21;19(11):1411-22. doi: 10.1016/j.chembiol.2012.09.012.
7
Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis.
Chem Biol. 2012 Oct 26;19(10):1278-87. doi: 10.1016/j.chembiol.2012.08.013. Epub 2012 Sep 27.
8
Structure and biosynthesis of the antibiotic bottromycin D.
Org Lett. 2012 Oct 5;14(19):5050-3. doi: 10.1021/ol3022758. Epub 2012 Sep 17.
9
The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain.
Nat Struct Mol Biol. 2012 Aug;19(8):767-72. doi: 10.1038/nsmb.2340. Epub 2012 Jul 15.
10
YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations.
Nat Chem Biol. 2012 Apr 22;8(6):569-75. doi: 10.1038/nchembio.944.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验