Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany.
Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, Germany ; Institute of General Pathology, Heidelberg University Medical School, University of Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany.
PLoS One. 2013 Dec 18;8(12):e82593. doi: 10.1371/journal.pone.0082593. eCollection 2013.
In systems biology, a mathematical description of signal transduction processes is used to gain a more detailed mechanistic understanding of cellular signaling networks. Such models typically depend on a number of parameters that have different influence on the model behavior. Local sensitivity analysis is able to identify parameters that have the largest effect on signaling strength. Bifurcation analysis shows on which parameters a qualitative model response depends. Most methods for model analysis are intrinsically univariate. They typically cannot consider combinations of parameters since the search space for such analysis would be too large. This limitation is important since activation of a signaling pathway often relies on multiple rather than on single factors. Here, we present a novel method for model analysis that overcomes this limitation. As input to a model defined by a system of ordinary differential equations, we consider parameters for initial chemical species concentrations. The model is used to simulate the system response, which is then classified into pre-defined classes (e.g., active or not active). This is combined with a scan of the parameter space. Parameter sets leading to a certain system response are subjected to a decision tree algorithm, which learns conditions that lead to this response. We compare our method to two alternative multivariate approaches to model analysis: analytical solution for steady states combined with a parameter scan, and direct Lyapunov exponent (DLE) analysis. We use three previously published models including a model for EGF receptor internalization and two apoptosis models to demonstrate the power of our approach. Our method reproduces critical parameter relations previously obtained by both steady-state and DLE analysis while being more generally applicable and substantially less computationally expensive. The method can be used as a general tool to predict multivariate control strategies for pathway activation and to suggest strategies for drug intervention.
在系统生物学中,对信号转导过程的数学描述用于深入了解细胞信号网络的机制。这种模型通常依赖于许多参数,这些参数对模型行为有不同的影响。局部灵敏度分析能够识别对信号强度影响最大的参数。分支分析表明定性模型响应取决于哪些参数。大多数模型分析方法都是内在的单变量的。它们通常不能考虑参数的组合,因为这种分析的搜索空间太大。这种限制很重要,因为激活信号通路通常依赖于多个因素,而不是单个因素。在这里,我们提出了一种新的模型分析方法,克服了这一限制。作为由常微分方程组定义的模型的输入,我们考虑初始化学物质浓度的参数。该模型用于模拟系统响应,然后将其分类为预定义的类别(例如,激活或未激活)。这与参数空间的扫描相结合。导致特定系统响应的参数集将被决策树算法处理,该算法学习导致该响应的条件。我们将我们的方法与两种替代的多变量模型分析方法进行了比较:稳态的解析解与参数扫描相结合,以及直接 Lyapunov 指数(DLE)分析。我们使用了三个以前发表的模型,包括一个 EGF 受体内化模型和两个凋亡模型,以证明我们的方法的有效性。我们的方法再现了以前通过稳态和 DLE 分析获得的关键参数关系,同时具有更广泛的适用性和显著更低的计算成本。该方法可用作预测途径激活的多变量控制策略的通用工具,并提出药物干预的策略。