Suppr超能文献

采用 1H 核磁共振波谱技术对血清样本进行代谢组学分析,作为诊断感染性休克的一种潜在方法。

Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock.

机构信息

1Bio-NMR-Centre, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada. 2Critical Care Epidemiologic and Biologic Tissue Resource (CCEPTR), Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada. 3Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada. 4Department of Physiology and Biophysics, University of Calgary, Calgary, AB, Canada.

出版信息

Crit Care Med. 2014 May;42(5):1140-9. doi: 10.1097/CCM.0000000000000142.

Abstract

OBJECTIVES

To determine whether a nuclear magnetic resonance-based metabolomics approach can be useful for the early diagnosis and prognosis of septic shock in ICUs.

DESIGN

Laboratory-based study.

SETTING

University research laboratory.

SUBJECTS

Serum samples from septic shock patients and ICU controls (ICU patients with systemic inflammatory response syndrome but not suspected of having an infection) were collected within 24 hours of admittance to the ICU.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

H nuclear magnetic resonance spectra of septic shock and ICU control samples were analyzed and quantified using a targeted profiling approach. By applying multivariate statistical analysis (e.g., orthogonal partial least squares discriminant analysis), we were able to distinguish the patient groups and detect specific metabolic patterns. Some of the metabolites were found to have a significant impact on the separation between septic shock and control samples. These metabolites could be interpreted in terms of a biological human response to septic shock and they might serve as a biomarker pattern for septic shock in ICUs. Additionally, nuclear magnetic resonance-based metabolomics was evaluated in order to detect metabolic variation between septic shock survivors and nonsurvivors and to predict patient outcome. The area under the receiver operating characteristic curve indicated an excellent predictive ability for the constructed orthogonal partial least squares discriminant analysis models (septic shock vs ICU controls: area under the receiver operating characteristic curve = 0.98; nonsurvivors vs survivors: area under the receiver operating characteristic curve = 1).

CONCLUSIONS

Our results indicate that nuclear magnetic resonance-based metabolic profiling could be used for diagnosis and mortality prediction of septic shock in the ICU.

摘要

目的

确定基于磁共振的代谢组学方法是否可用于 ICU 中脓毒性休克的早期诊断和预后判断。

设计

实验室研究。

地点

大学研究实验室。

对象

脓毒性休克患者和 ICU 对照者(即 ICU 中全身炎症反应综合征患者,但不怀疑有感染)的血清样本在入 ICU 后 24 小时内采集。

干预措施

无。

测量和主要结果

采用靶向分析方法对脓毒性休克和 ICU 对照者样本的 H 磁共振波谱进行分析和定量。通过应用多元统计分析(例如正交偏最小二乘判别分析),我们能够区分患者组并检测到特定的代谢模式。一些代谢物被发现对脓毒性休克和对照样本的分离有显著影响。这些代谢物可以从生物学角度解释为人类对脓毒性休克的反应,并且可能作为 ICU 中脓毒性休克的生物标志物模式。此外,还评估了基于磁共振的代谢组学,以检测脓毒性休克存活者和非存活者之间的代谢变化,并预测患者预后。受试者工作特征曲线下面积表明所构建的正交偏最小二乘判别分析模型具有出色的预测能力(脓毒性休克与 ICU 对照者:受试者工作特征曲线下面积=0.98;非存活者与存活者:受试者工作特征曲线下面积=1)。

结论

我们的结果表明,基于磁共振的代谢组学分析可用于 ICU 中脓毒性休克的诊断和死亡率预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验