Suppr超能文献

重症监护病房中基于1H NMR尿液代谢组学的严重脓毒症和脓毒性休克的预后生物标志物

Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit.

作者信息

Garcia-Simon Monica, Morales Jose M, Modesto-Alapont Vicente, Gonzalez-Marrachelli Vannina, Vento-Rehues Rosa, Jorda-Miñana Angela, Blanquer-Olivas Jose, Monleon Daniel

机构信息

Department of Critical Care, Clinical University Hospital of Valencia, Valencia, Spain.

Central Unit of Research in Medicine, University of Valencia, Valencia, Spain.

出版信息

PLoS One. 2015 Nov 13;10(11):e0140993. doi: 10.1371/journal.pone.0140993. eCollection 2015.

Abstract

Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by (1)H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a (1)H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA.

摘要

早期诊断和患者分层通过及时开始适当的特异性治疗可能改善脓毒症的预后。我们旨在通过氢核磁共振波谱法确定尿液中脓毒症的代谢组学生物标志物,以评估严重程度并预测预后。从重症监护病房(ICU)的64例严重脓毒症或脓毒性休克患者中收集尿液样本,用于获取氢核磁共振波谱。对处理后的波谱进行监督分析,并使用偏最小二乘判别分析(PLS-DA)构建脓毒症预后(30天死亡率/生存率)的预测模型。此外,我们比较了代谢组学数据相对于序贯器官衰竭评估(SOFA)评分的预测能力。监督多变量分析提供了一个良好的预测模型,以区分患者组并检测特定的代谢模式。预后不良的患者乙醇、葡萄糖和马尿酸盐水平较高,相反,蛋氨酸、谷氨酰胺、精氨酸和苯丙氨酸水平较低。这些代谢物可能是人类对脓毒症休克代谢反应及其在ICU患者中死亡率的复合生物模式的一部分。内部交叉验证显示所获得的代谢预测模型具有稳健性,并且与SOFA值相比具有更好的预测能力。我们的结果表明,核磁共振代谢谱分析可能有助于在早期确定预后最差的脓毒症患者的代谢组学表型。使用这些代谢物建立的脓毒症患者病情发展预测模型,与成熟的器官功能障碍评分SOFA相比,能够以更高的敏感性和特异性对病例进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a1e/4643898/bfbcd4b7e26e/pone.0140993.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验