Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria 3800 Australia.
Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria 3800 Australia; Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne, Victoria 3800 Australia.
J Biol Chem. 2014 Mar 7;289(10):6332-6340. doi: 10.1074/jbc.M113.513135. Epub 2013 Dec 27.
The gastric pathogen Helicobacter pylori is a major cause of acute chronic gastritis and the development of stomach and duodenal ulcers. Chronic infection furthermore predisposes to the development of gastric cancer. Crucial to H. pylori survival within the hostile environment of the digestive system are the adhesins SabA and BabA; these molecules belong to the same protein family and permit the bacteria to bind tightly to sugar moieties Lewis(B) and sialyl-Lewis(X), respectively, on the surface of epithelial cells lining the stomach and duodenum. To date, no representative SabA/BabA structure has been determined, hampering the development of strategies to eliminate persistent H. pylori infections that fail to respond to conventional therapy. Here, using x-ray crystallography, we show that the soluble extracellular adhesin domain of SabA shares distant similarity to the tetratricopeptide repeat fold family. The molecule broadly resembles a golf putter in shape, with the head region featuring a large cavity surrounded by loops that vary in sequence between different H. pylori strains. The N-terminal and C-terminal helices protrude at right angles from the head domain and together form a shaft that connects to a predicted outer membrane protein-like β-barrel trans-membrane domain. Using surface plasmon resonance, we were able to detect binding of the SabA adhesin domain to sialyl-Lewis(X) and Lewis(X) but not to Lewis(A), Lewis(B), or Lewis(Y). Substitution of the highly conserved glutamine residue 159 in the predicted ligand-binding pocket abrogates the binding of the SabA adhesin domain to sialyl-Lewis(X) and Lewis(X). Taken together, these data suggest that the adhesin domain of SabA is sufficient in isolation for specific ligand binding.
胃病原体幽门螺杆菌是急性和慢性胃炎以及胃和十二指肠溃疡发展的主要原因。慢性感染进一步使胃癌的发展成为可能。SabA 和 BabA 黏附素对于幽门螺杆菌在消化系统恶劣环境中的生存至关重要;这两种分子属于同一蛋白家族,使细菌能够分别与胃和十二指肠上皮细胞表面的 Lewis(B)和唾液酸-Lewis(X)糖基紧密结合。迄今为止,尚未确定 SabA/BabA 的代表性结构,这阻碍了消除对常规疗法无反应的持续性幽门螺杆菌感染的策略的发展。在这里,我们使用 X 射线晶体学表明,SabA 的可溶性细胞外黏附素结构域与四肽重复折叠家族具有远缘相似性。该分子在形状上大致类似于高尔夫推杆,头部区域具有一个大腔,周围是序列在不同幽门螺杆菌菌株之间变化的环。N 端和 C 端螺旋从头部区域垂直突出,并共同形成连接到预测的外膜蛋白样β-桶跨膜域的轴。使用表面等离子体共振,我们能够检测到 SabA 黏附素结构域与唾液酸-Lewis(X)和 Lewis(X)的结合,但不能与 Lewis(A)、Lewis(B)或 Lewis(Y)结合。在预测的配体结合口袋中高度保守的谷氨酰胺 159 取代会破坏 SabA 黏附素结构域与唾液酸-Lewis(X)和 Lewis(X)的结合。这些数据表明,SabA 的黏附素结构域在孤立状态下足以特异性结合配体。