Suppr超能文献

白色念珠菌在巨噬细胞中引发NLRP3介导的细胞焦亡。

Candida albicans triggers NLRP3-mediated pyroptosis in macrophages.

作者信息

Wellington Melanie, Koselny Kristy, Sutterwala Fayyaz S, Krysan Damian J

机构信息

Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.

出版信息

Eukaryot Cell. 2014 Feb;13(2):329-40. doi: 10.1128/EC.00336-13. Epub 2013 Dec 27.

Abstract

Pyroptosis is an inflammasome-mediated programmed cell death pathway triggered in macrophages by a variety of stimuli, including intracellular bacterial pathogens. Activation of pyroptosis leads to the secretion of interleukin-1β (IL-1β) and pore-mediated cell lysis. Although not considered an intracellular pathogen, Candida albicans is able to kill and, thereby, escape from macrophages. Here, we show that C. albicans-infected bone marrow-derived macrophages (BMDM) and murine J774 macrophages undergo pyroptotic cell death that is suppressed by glycine and pharmacologic inhibition of caspase-1. Infection of BMDM harvested from mice lacking components of the inflammasome revealed that pyroptosis was dependent on caspase-1, ASC, and NLRP3 and independent of NLRC4. In contrast to its role during intracellular bacterial infection, pyroptosis does not restrict C. albicans replication. Nonfilamentous Candida spp. did not trigger pyroptosis, while Candida krusei, which forms pseudohyphae in macrophages, triggered much lower levels than did C. albicans. Interestingly, a Saccharomyces cerevisiae strain from the filamentous background Σ1278 also triggered low, but significant, levels of pyroptosis. We have found that deletion of the transcription factor UPC2 decreases pyroptosis but has little effect on filamentation in the macrophage. In addition, a gain-of-function mutant of UPC2 induces higher levels of pyroptosis than does a matched control strain. Taken together, these data are most consistent with a model in which filamentation is necessary but not sufficient to trigger NLRP3 inflammasome-mediated pyroptosis. This is the first example of a fungal pathogen triggering pyroptosis and indicates that C. albicans-mediated macrophage damage is not solely due to hypha-induced physical disruption of cellular integrity.

摘要

细胞焦亡是一种由炎性小体介导的程序性细胞死亡途径,可由多种刺激在巨噬细胞中触发,包括细胞内细菌病原体。细胞焦亡的激活导致白细胞介素-1β(IL-1β)的分泌和孔介导的细胞裂解。尽管白色念珠菌不被认为是细胞内病原体,但它能够杀死巨噬细胞并从中逃脱。在这里,我们表明,白色念珠菌感染的骨髓来源巨噬细胞(BMDM)和小鼠J774巨噬细胞会发生细胞焦亡,甘氨酸和半胱天冬酶-1的药理学抑制可抑制这种细胞焦亡。对缺乏炎性小体成分的小鼠收获的BMDM进行感染后发现,细胞焦亡依赖于半胱天冬酶-1、ASC和NLRP3,而不依赖于NLRC4。与其在细胞内细菌感染中的作用相反,细胞焦亡并不限制白色念珠菌的复制。非丝状念珠菌属不会触发细胞焦亡,而在巨噬细胞中形成假菌丝的克鲁斯念珠菌触发的细胞焦亡水平比白色念珠菌低得多。有趣的是,来自丝状背景Σ1278的酿酒酵母菌株也触发了低水平但显著的细胞焦亡。我们发现,转录因子UPC2的缺失会降低细胞焦亡,但对巨噬细胞中的丝状化影响很小。此外,UPC2的功能获得突变体诱导的细胞焦亡水平高于匹配的对照菌株。综上所述,这些数据最符合一种模型,即丝状化是触发NLRP3炎性小体介导的细胞焦亡所必需的,但并不充分。这是真菌病原体触发细胞焦亡的第一个例子,表明白色念珠菌介导的巨噬细胞损伤并非仅仅由于菌丝诱导的细胞完整性物理破坏。

相似文献

1
Candida albicans triggers NLRP3-mediated pyroptosis in macrophages.
Eukaryot Cell. 2014 Feb;13(2):329-40. doi: 10.1128/EC.00336-13. Epub 2013 Dec 27.
2
Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome.
Cell Death Dis. 2019 Jul 17;10(8):542. doi: 10.1038/s41419-019-1761-4.
4
The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.
mBio. 2014 Mar 25;5(2):e00003-14. doi: 10.1128/mBio.00003-14.
5
Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17254-9. doi: 10.1073/pnas.1415756111. Epub 2014 Nov 17.
6
Candida albicans morphogenesis is not required for macrophage interleukin 1β production.
mBio. 2012 Dec 26;4(1):e00433-12. doi: 10.1128/mBio.00433-12.
7
Metabolic competition between host and pathogen dictates inflammasome responses to fungal infection.
PLoS Pathog. 2020 Aug 4;16(8):e1008695. doi: 10.1371/journal.ppat.1008695. eCollection 2020 Aug.

引用本文的文献

1
IRE1α promotes phagosomal calcium flux to enhance macrophage fungicidal activity.
Cell Rep. 2025 May 27;44(5):115694. doi: 10.1016/j.celrep.2025.115694. Epub 2025 May 9.
2
Promising Role of Fruitless Wolfberry Bud Tea in Combating Resistance.
Pathogens. 2025 Apr 4;14(4):351. doi: 10.3390/pathogens14040351.
3
IL-18 production is required for the generation of a Th1 response during experimental chromoblastomycosis.
PLoS One. 2025 May 2;20(5):e0322127. doi: 10.1371/journal.pone.0322127. eCollection 2025.
4
Candidalysin biology and activation of host cells.
mBio. 2025 Jun 11;16(6):e0060324. doi: 10.1128/mbio.00603-24. Epub 2025 Apr 28.
6
Hyphal swelling induced in the phagosome of macrophages.
Fungal Biol. 2024 Nov;128(7):2148-2156. doi: 10.1016/j.funbio.2024.08.011. Epub 2024 Sep 2.
7
and : global priority pathogens.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0002123. doi: 10.1128/mmbr.00021-23. Epub 2024 Jun 4.
8
Alpha1-antitrypsin impacts innate host-pathogen interactions with by stimulating fungal filamentation.
Virulence. 2024 Dec;15(1):2333367. doi: 10.1080/21505594.2024.2333367. Epub 2024 Apr 10.
9
Macrophage pyroptosis induced by Candida albicans.
Pathog Dis. 2024 Feb 7;82. doi: 10.1093/femspd/ftae003.
10
Pyroptosis in microbial infectious diseases.
Mol Biol Rep. 2023 Dec 29;51(1):42. doi: 10.1007/s11033-023-09078-w.

本文引用的文献

1
Fungal immune evasion in a model host-pathogen interaction: Candida albicans versus macrophages.
PLoS Pathog. 2013;9(11):e1003741. doi: 10.1371/journal.ppat.1003741. Epub 2013 Nov 21.
2
Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence.
Eukaryot Cell. 2014 Jan;13(1):127-42. doi: 10.1128/EC.00245-13. Epub 2013 Nov 15.
3
Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids.
J Immunol. 2013 Oct 15;191(8):4337-47. doi: 10.4049/jimmunol.1300298. Epub 2013 Sep 16.
4
Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis.
J Infect Dis. 2014 Jan 1;209(1):109-19. doi: 10.1093/infdis/jit413. Epub 2013 Aug 6.
5
Antimicrobial functions of inflammasomes.
Curr Opin Microbiol. 2013 Jun;16(3):311-8. doi: 10.1016/j.mib.2013.02.004. Epub 2013 Mar 4.
6
Thriving within the host: Candida spp. interactions with phagocytic cells.
Med Microbiol Immunol. 2013 Jun;202(3):183-95. doi: 10.1007/s00430-013-0288-z. Epub 2013 Jan 25.
7
Candida albicans morphogenesis is not required for macrophage interleukin 1β production.
mBio. 2012 Dec 26;4(1):e00433-12. doi: 10.1128/mBio.00433-12.
8
Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans.
J Immunol. 2012 Nov 15;189(10):4713-7. doi: 10.4049/jimmunol.1201715. Epub 2012 Oct 15.
9
Global gene deletion analysis exploring yeast filamentous growth.
Science. 2012 Sep 14;337(6100):1353-6. doi: 10.1126/science.1224339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验