Institute for Neural Computation, University of California San Diego , La Jolla, CA , USA ; Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies , La Jolla, CA , USA.
Institute for Neural Computation, University of California San Diego , La Jolla, CA , USA.
Front Neurol. 2013 Dec 11;4:200. doi: 10.3389/fneur.2013.00200. eCollection 2013.
The pathophysiology of Parkinson's disease (PD) is known to involve altered patterns of neuronal firing and synchronization in cortical-basal ganglia circuits. One window into the nature of the aberrant temporal dynamics in the cerebral cortex of PD patients can come from analysis of the patients electroencephalography (EEG). Rather than using spectral-based methods, we used data models based on delay differential equations (DDE) as non-linear time-domain classification tools to analyze EEG recordings from PD patients on and off dopaminergic therapy and healthy individuals. Two sets of 50 1-s segments of 64-channel EEG activity were recorded from nine PD patients on and off medication and nine age-matched controls. The 64 EEG channels were grouped into 10 clusters covering frontal, central, parietal, and occipital brain regions for analysis. DDE models were fitted to individual trials, and model coefficients and error were used as features for classification. The best models were selected using repeated random sub-sampling validation and classification performance was measured using the area under the ROC curve A'. In a companion paper, we show that DDEs can uncover hidden dynamical structure from short segments of simulated time series of known dynamical systems in high noise regimes. Using the same method for finding the best models, we found here that even short segments of EEG data in PD patients and controls contained dynamical structure, and moreover, that PD patients exhibited a greater dynamic range than controls. DDE model output on the means from one set of 50 trials provided nearly complete separation of PD patients off medication from controls: across brain regions, the area under the receiver-operating characteristic curves, A', varied from 0.95 to 1.0. For distinguishing PD patients on vs. off medication, classification performance A' ranged from 0.86 to 1.0 across brain regions. Moreover, the generalizability of the model to the second set of 50 trials was excellent, with A' ranging from 0.81 to 0.94 across brain regions for controls vs. PD off medication, and from 0.62 to 0.82 for PD on medication vs. off. Finally, model features significantly predicted individual patients' motor severity, as assessed with standard clinical rating scales.
帕金森病(PD)的病理生理学已知涉及皮质-基底节回路中神经元放电和同步的改变模式。从 PD 患者脑电图(EEG)的分析中可以了解到大脑皮层异常时间动态的本质。我们没有使用基于频谱的方法,而是使用基于延迟微分方程(DDE)的数据模型作为非线性时域分类工具来分析 PD 患者在接受和不接受多巴胺治疗以及健康个体的 EEG 记录。从 9 名接受和不接受药物治疗的 PD 患者以及 9 名年龄匹配的对照者中记录了两组 50 个 64 通道 EEG 活动的 1 秒片段。将 64 个 EEG 通道分为 10 个簇,用于分析额叶、中央、顶叶和枕叶脑区。为每个试验拟合 DDE 模型,并将模型系数和误差用作分类特征。使用重复随机子抽样验证选择最佳模型,并使用 ROC 曲线下的面积 A'来衡量分类性能。在另一篇论文中,我们表明 DDE 可以在高噪声环境下从已知动力学系统的短时间序列模拟中揭示隐藏的动态结构。使用相同的方法找到最佳模型,我们在这里发现,即使是 PD 患者和对照组的 EEG 数据的短片段也包含动态结构,而且,PD 患者的动态范围比对照组更大。一组 50 次试验平均值的 DDE 模型输出几乎完全将不服用药物的 PD 患者与对照组分开:在大脑区域中,接收器操作特性曲线下的面积 A'从 0.95 到 1.0 不等。对于区分服用药物与不服用药物的 PD 患者,大脑区域的分类性能 A'从 0.86 到 1.0 不等。此外,模型对第二组 50 次试验的可推广性非常好,对于对照组与不服用药物的 PD 患者,大脑区域的 A'从 0.81 到 0.94 不等,对于服用药物与不服用药物的 PD 患者,A'从 0.62 到 0.82 不等。最后,模型特征可显著预测个体患者的运动严重程度,通过标准临床评估量表进行评估。