Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada.
Neural Netw. 2020 Oct;130:75-84. doi: 10.1016/j.neunet.2020.06.018. Epub 2020 Jun 25.
Electroencephalogram (EEG) signals accumulate the brain's spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient's limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99.2%(+0.52%) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances.
脑电图 (EEG) 信号使用放置在头皮上的标准化电极累积大脑的尖峰活动。这些累积的大脑信号本质上是混沌的,并且根据当前的身体和/或精神活动而变化。由于帕金森病 (PD),一种神经退行性疾病,多巴胺释放神经元死亡会改变大脑的解剖结构。由此产生的改变迫使大脑运动区域深处的β频带成分中的神经元同步活动。这种运动区域的同步会影响大脑活动的动力学行为,从而导致患者肢体运动相关障碍。由于没有测试或扫描来诊断 PD,因此寻找可靠的 PD 生物标志物是一个活跃的研究领域。我们使用嵌入重建,一种来自混沌理论的工具,来突出 EEG 中与 PD 相关的动力学特性变化,并将其作为 PD 相关分类的潜在可靠生物标志物。我们使用个体成分分析 (ICA) 来证明强化的同步可以从大脑运动区域的 EEG 通道中累积收集。我们利用这些信息从 12 个 EEG 通道中选择用于分类开和关药物 PD 患者的通道。此外,PD 患者的高频分量的幅度和β分量的相位之间存在强烈的同步。此信息用于改善此分类的性能。我们应用嵌入重建来设计一种称为动态系统生成混合网络的深度神经网络的新架构。我们报告说,该网络在分类精度方面的表现优于最新技术,达到了 99.2%(+0.52%),而计算资源仅约为 24%。除了分类精度之外,我们还使用了特异性、敏感性、马修斯相关系数 (MCC)、F1 分数和科恩kappa 分数等知名统计措施来分析和比较分类性能。