Suppr超能文献

对读段修剪对Illumina二代测序数据分析的影响进行的广泛评估。

An extensive evaluation of read trimming effects on Illumina NGS data analysis.

作者信息

Del Fabbro Cristian, Scalabrin Simone, Morgante Michele, Giorgi Federico M

机构信息

Institute of Applied Genomics, Udine, Italy.

IGA Technology Services, Udine, Italy.

出版信息

PLoS One. 2013 Dec 23;8(12):e85024. doi: 10.1371/journal.pone.0085024. eCollection 2013.

Abstract

Next Generation Sequencing is having an extremely strong impact in biological and medical research and diagnostics, with applications ranging from gene expression quantification to genotyping and genome reconstruction. Sequencing data is often provided as raw reads which are processed prior to analysis 1 of the most used preprocessing procedures is read trimming, which aims at removing low quality portions while preserving the longest high quality part of a NGS read. In the current work, we evaluate nine different trimming algorithms in four datasets and three common NGS-based applications (RNA-Seq, SNP calling and genome assembly). Trimming is shown to increase the quality and reliability of the analysis, with concurrent gains in terms of execution time and computational resources needed.

摘要

新一代测序技术正在对生物学和医学研究及诊断产生极其强大的影响,其应用范围从基因表达定量到基因分型和基因组重建。测序数据通常以原始读数的形式提供,在分析之前需要进行处理。最常用的预处理程序之一是读段修剪,其目的是去除低质量部分,同时保留NGS读段中最长的高质量部分。在当前的工作中,我们在四个数据集和三个基于NGS的常见应用(RNA测序、单核苷酸多态性(SNP)检测和基因组组装)中评估了九种不同的修剪算法。结果表明,修剪可提高分析的质量和可靠性,同时在执行时间和所需计算资源方面也有相应的提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18dd/3871669/89b6f9854566/pone.0085024.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验