Suppr超能文献

RobiNA:一个基于 RNA-Seq 的转录组学的用户友好、集成的软件解决方案。

RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics.

机构信息

Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.

出版信息

Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7. doi: 10.1093/nar/gks540. Epub 2012 Jun 8.

Abstract

Recent rapid advances in next generation RNA sequencing (RNA-Seq)-based provide researchers with unprecedentedly large data sets and open new perspectives in transcriptomics. Furthermore, RNA-Seq-based transcript profiling can be applied to non-model and newly discovered organisms because it does not require a predefined measuring platform (like e.g. microarrays). However, these novel technologies pose new challenges: the raw data need to be rigorously quality checked and filtered prior to analysis, and proper statistical methods have to be applied to extract biologically relevant information. Given the sheer volume of data, this is no trivial task and requires a combination of considerable technical resources along with bioinformatics expertise. To aid the individual researcher, we have developed RobiNA as an integrated solution that consolidates all steps of RNA-Seq-based differential gene-expression analysis in one user-friendly cross-platform application featuring a rich graphical user interface. RobiNA accepts raw FastQ files, SAM/BAM alignment files and counts tables as input. It supports quality checking, flexible filtering and statistical analysis of differential gene expression based on state-of-the art biostatistical methods developed in the R/Bioconductor projects. In-line help and a step-by-step manual guide users through the analysis. Installer packages for Mac OS X, Windows and Linux are available under the LGPL licence from http://mapman.gabipd.org/web/guest/robin.

摘要

近年来,基于新一代 RNA 测序(RNA-Seq)的技术取得了快速进展,为研究人员提供了前所未有的大数据集,并在转录组学领域开辟了新的视角。此外,基于 RNA-Seq 的转录谱分析可以应用于非模式生物和新发现的生物,因为它不需要预定义的测量平台(如微阵列)。然而,这些新的技术带来了新的挑战:在进行分析之前,需要严格检查和过滤原始数据,并应用适当的统计方法来提取有生物学意义的信息。鉴于数据量之大,这并非易事,需要结合大量的技术资源和生物信息学专业知识。为了帮助单个研究人员,我们开发了 RobiNA,它是一个集成的解决方案,将基于 RNA-Seq 的差异基因表达分析的所有步骤整合到一个用户友好的跨平台应用程序中,该应用程序具有丰富的图形用户界面。RobiNA 接受原始的 FastQ 文件、SAM/BAM 对齐文件和计数表作为输入。它支持基于最新的生物统计学方法的质量检查、灵活的过滤和差异基因表达的统计分析,这些方法是在 R/Bioconductor 项目中开发的。在线帮助和分步手册指南引导用户完成分析。Mac OS X、Windows 和 Linux 的安装程序包可根据 LGPL 许可证从 http://mapman.gabipd.org/web/guest/robin 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ac/3394330/4ea90fed4f3c/gks540f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验