Suppr超能文献

描述系统的复杂性:多变量“集合复杂性”与系统生物学的信息基础。

Describing the complexity of systems: multivariable "set complexity" and the information basis of systems biology.

作者信息

Galas David J, Sakhanenko Nikita A, Skupin Alexander, Ignac Tomasz

机构信息

1 Pacific Northwest Diabetes Research Institute , Seattle, Washington.

出版信息

J Comput Biol. 2014 Feb;21(2):118-40. doi: 10.1089/cmb.2013.0039. Epub 2013 Dec 30.

Abstract

Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.

摘要

上下文依赖性是复杂性描述的核心。基于“集合复杂性”的成对定义,我们采用信息论方法来制定系统复杂性的通用度量。我们从交互信息的概念出发研究多变量依赖性的性质。然后,我们提出了一种用于无偏检测多变量依赖性的新度量——“微分交互信息”。对于两个变量,这个量简化为先前提出的作为生物系统中信息的上下文相关度量的成对“集合复杂性”。我们在此将其推广到任意数量的变量。“微分交互信息”的关键极限性质是推广的关键。这个度量扩展了先前关于生物信息的概念,并为复杂性研究提供了更完善的基础。“微分交互信息”的性质还为数据分析提出了新方法。给定一个系统测量的数据集,微分交互信息可以提供集体依赖性的度量,这可以在描述复杂系统交互模式的超图中表示出来。我们使用模拟数据集研究这种分析。广义集合复杂性度量、多变量依赖性分析和超图的结合是我们的核心成果。虽然我们关注的是复杂生物系统,但我们的结果适用于任何复杂系统。

相似文献

5
A graphical and computational modeling platform for biological pathways.用于生物途径的图形和计算建模平台。
Nat Protoc. 2018 Apr;13(4):705-722. doi: 10.1038/nprot.2017.144. Epub 2018 Mar 15.
6
Modeling Cell Communication with Time-Dependent Signaling Hypergraphs.基于时变信号超图的细胞通讯建模。
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):1151-1163. doi: 10.1109/TCBB.2019.2937033. Epub 2021 Jun 3.
8
9
Systems Biology of Ageing.衰老的系统生物学
Subcell Biochem. 2023;102:415-424. doi: 10.1007/978-3-031-21410-3_16.

引用本文的文献

6
Toward an Information Theory of Quantitative Genetics.迈向数量遗传学的信息理论。
J Comput Biol. 2021 Jun;28(6):527-559. doi: 10.1089/cmb.2020.0032. Epub 2020 Dec 31.

本文引用的文献

1
Biological Information as Set-Based Complexity.作为基于集合的复杂性的生物信息
IEEE Trans Inf Theory. 2010 Feb;56(2):667-677. doi: 10.1109/TIT.2009.2037046. Epub 2010 Feb 25.
6
Hypergraphs and cellular networks.超图与细胞网络。
PLoS Comput Biol. 2009 May;5(5):e1000385. doi: 10.1371/journal.pcbi.1000385. Epub 2009 May 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验