Yen Peter Tsung-Wen, Xia Kelin, Cheong Siew Ann
Center for Crystal Researches, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan.
School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
Entropy (Basel). 2023 May 25;25(6):846. doi: 10.3390/e25060846.
An important challenge in the study of complex systems is to identify appropriate effective variables at different times. In this paper, we explain why structures that are persistent with respect to changes in length and time scales are proper effective variables, and illustrate how persistent structures can be identified from the spectra and Fiedler vector of the graph Laplacian at different stages of the topological data analysis (TDA) filtration process for twelve toy models. We then investigated four market crashes, three of which were related to the COVID-19 pandemic. In all four crashes, a persistent gap opens up in the Laplacian spectra when we go from a normal phase to a crash phase. In the crash phase, the persistent structure associated with the gap remains distinguishable up to a characteristic length scale ϵ* where the first non-zero Laplacian eigenvalue changes most rapidly. Before ϵ*, the distribution of components in the Fiedler vector is predominantly bi-modal, and this distribution becomes uni-modal after ϵ*. Our findings hint at the possibility of understanding market crashs in terms of both continuous and discontinuous changes. Beyond the graph Laplacian, we can also employ Hodge Laplacians of higher order for future research.
复杂系统研究中的一个重要挑战是在不同时间识别合适的有效变量。在本文中,我们解释了为何在长度和时间尺度变化方面具有持久性的结构是合适的有效变量,并说明了如何在十二个玩具模型的拓扑数据分析(TDA)过滤过程的不同阶段,从图拉普拉斯算子的谱和菲德勒向量中识别出持久结构。然后,我们研究了四次市场崩溃,其中三次与新冠疫情有关。在所有四次崩溃中,当我们从正常阶段进入崩溃阶段时,拉普拉斯谱中会出现一个持久的间隙。在崩溃阶段,与该间隙相关的持久结构在特征长度尺度ϵ之前都保持可区分,在ϵ处第一个非零拉普拉斯特征值变化最为迅速。在ϵ之前,菲德勒向量中各分量的分布主要是双峰的,而在ϵ之后这种分布变为单峰。我们的发现暗示了从连续和不连续变化两方面理解市场崩溃的可能性。除了图拉普拉斯算子,未来研究中我们还可以采用高阶霍奇拉普拉斯算子。