Suppr超能文献

使用莫比乌斯算子探索多元信息测度之间的对称性。

Symmetries among Multivariate Information Measures Explored Using Möbius Operators.

作者信息

Galas David J, Sakhanenko Nikita A

机构信息

Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.

出版信息

Entropy (Basel). 2019 Jan 18;21(1):88. doi: 10.3390/e21010088.

Abstract

Relations between common information measures include the duality relations based on Möbius inversion on lattices, which are the direct consequence of the symmetries of the lattices of the sets of variables (subsets ordered by inclusion). In this paper we use the lattice and functional symmetries to provide a unifying formalism that reveals some new relations and systematizes the symmetries of the information functions. To our knowledge, this is the first systematic examination of the full range of relationships of this class of functions. We define operators on functions on these lattices based on the Möbius inversions that map functions into one another, which we call Möbius operators, and show that they form a simple group isomorphic to the symmetric group S. Relations among the set of functions on the lattice are transparently expressed in terms of the operator algebra, and, when applied to the information measures, can be used to derive a wide range of relationships among diverse information measures. The Möbius operator algebra is then naturally generalized which yields an even wider range of new relationships.

摘要

常见信息度量之间的关系包括基于格上莫比乌斯反演的对偶关系,这是变量集格(按包含关系排序的子集)对称性的直接结果。在本文中,我们利用格和函数对称性来提供一种统一的形式体系,该体系揭示了一些新的关系,并使信息函数的对称性系统化。据我们所知,这是对这类函数的全部关系进行的首次系统研究。我们基于莫比乌斯反演在这些格上的函数上定义算子,这些算子将函数相互映射,我们称之为莫比乌斯算子,并表明它们形成一个与对称群(S)同构的简单群。格上函数集之间的关系通过算子代数被清晰地表达出来,并且当应用于信息度量时,可用于推导各种不同信息度量之间的广泛关系。然后,莫比乌斯算子代数被自然地推广,这产生了范围更广的新关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84c3/7514198/bc6a9431ba4d/entropy-21-00088-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验