Jobst Markus A, Schoeler Constantin, Malinowska Klara, Nash Michael A
Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität.
J Vis Exp. 2013 Dec 20(82):e50950. doi: 10.3791/50950.
Cellulosomes are discrete multienzyme complexes used by a subset of anaerobic bacteria and fungi to digest lignocellulosic substrates. Assembly of the enzymes onto the noncatalytic scaffold protein is directed by interactions among a family of related receptor-ligand pairs comprising interacting cohesin and dockerin modules. The extremely strong binding between cohesin and dockerin modules results in dissociation constants in the low picomolar to nanomolar range, which may hamper accurate off-rate measurements with conventional bulk methods. Single-molecule force spectroscopy (SMFS) with the atomic force microscope measures the response of individual biomolecules to force, and in contrast to other single-molecule manipulation methods (i.e. optical tweezers), is optimal for studying high-affinity receptor-ligand interactions because of its ability to probe the high-force regime (>120 pN). Here we present our complete protocol for studying cellulosomal protein assemblies at the single-molecule level. Using a protein topology derived from the native cellulosome, we worked with enzyme-dockerin and carbohydrate binding module-cohesin (CBM-cohesin) fusion proteins, each with an accessible free thiol group at an engineered cysteine residue. We present our site-specific surface immobilization protocol, along with our measurement and data analysis procedure for obtaining detailed binding parameters for the high-affinity complex. We demonstrate how to quantify single subdomain unfolding forces, complex rupture forces, kinetic off-rates, and potential widths of the binding well. The successful application of these methods in characterizing the cohesin-dockerin interaction responsible for assembly of multidomain cellulolytic complexes is further described.
纤维小体是一类由部分厌氧细菌和真菌用于消化木质纤维素底物的离散多酶复合体。酶在非催化支架蛋白上的组装由一组相关的受体 - 配体对之间的相互作用引导,这些对包括相互作用的黏连蛋白和dockerin模块。黏连蛋白和dockerin模块之间极强的结合导致解离常数处于低皮摩尔到纳摩尔范围,这可能会妨碍使用传统的批量方法进行准确的解离速率测量。原子力显微镜的单分子力谱(SMFS)测量单个生物分子对力的响应,并且与其他单分子操纵方法(即光镊)相比,由于其能够探测高力区域(>120 pN),因此对于研究高亲和力受体 - 配体相互作用是最佳的。在这里,我们展示了在单分子水平上研究纤维小体蛋白组装的完整方案。使用源自天然纤维小体的蛋白质拓扑结构,我们研究了酶 - dockerin和碳水化合物结合模块 - 黏连蛋白(CBM - 黏连蛋白)融合蛋白,每个蛋白在工程化的半胱氨酸残基处都有一个可及的游离巯基。我们展示了我们的位点特异性表面固定方案,以及用于获得高亲和力复合物详细结合参数的测量和数据分析程序。我们展示了如何量化单个亚结构域的解折叠力、复合物破裂力、动力学解离速率以及结合阱的潜在宽度。进一步描述了这些方法在表征负责多结构域纤维素分解复合物组装的黏连蛋白 - dockerin相互作用中的成功应用。