From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
J Biol Chem. 2018 Mar 16;293(11):4201-4212. doi: 10.1074/jbc.RA117.001241. Epub 2018 Jan 24.
The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type-I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type-I cohesin-dockerin specificity in Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both, of the ligand-binding sites of ScaB, whereas attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.
纤维小体是一种由厌氧细菌产生的非常复杂的多酶纳米机器,用于降解植物细胞壁多糖。纤维小体的组装是通过酶携带的 dockerin 模块与主要支架子单元的黏合模块结合来介导的。产甲烷菌产生一种高度复杂的纤维小体,包括一个衔接支架蛋白 ScaB,其黏合模块与整合纤维小体酶的主要支架蛋白 ScaA 的 dockerin 相互作用。ScaB 的 dockerin 选择性地结合到锚定纤维小体到细胞表面的 ScaC 的黏合模块上。正确的纤维小体组装需要由结构相关的 I 型黏合- dockerin 对介导的 ScaC-ScaB 和 ScaA-酶组装来显示不同的特异性。为了探索这两种关键蛋白相互作用显示其所需特异性的机制,我们确定了一个纤维小体酶的 dockerin 与 ScaA 黏合模块复合物的晶体结构。数据显示,酶携带的 dockerin 以两种取向与 ScaA 黏合模块结合,表明有两个相同的黏合模块结合位点。组合诱变实验用于鉴定调节 I 型黏合- dockerin 特异性的氨基酸残基。合理设计用于测试假设,即 ScaA 和 ScaB 相关 dockerin 的配体结合表面介导黏合模块识别,而与结构支架无关。因此,可以将新的特异性工程设计到 ScaB 的一个而不是两个配体结合位点中,而尝试操纵酶相关 dockerin 的特异性则不成功。这些数据表明,dockerin 的特异性需要这些模块的配体结合表面和结构支架之间的关键相互作用。