Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4970.
Hypertension. 2014 Mar;63(3):e68-73. doi: 10.1161/HYPERTENSIONAHA.113.02564. Epub 2013 Dec 30.
The proximal nephron reabsorbs 60% to 70% of the fluid and sodium and most of the filtered bicarbonate via Na/H exchanger 3. Enhanced proximal nephron transport is implicated in hypertension. Our findings show that a fructose-enriched diet causes salt sensitivity. We hypothesized that fructose stimulates luminal Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. Na/H exchange was measured in rat proximal tubules as the rate of intracellular pH (pHi) recovery in fluorescent units/s. Replacing 5 mmol/L glucose with 5 mmol/L fructose increased the rate of pHi recovery (1.8±0.6 fluorescent units/s; P<0.02; n=8). Staurosporine, a protein kinase C inhibitor, blocked this effect. We studied whether this effect was because of the addition of fructose or removal of glucose. The basal rate of pHi recovery was first tested in the presence of a 0.6-mmol/L glucose and 1, 3, or 5 mmol/L fructose added in a second period. The rate of pHi recovery did not change with 1 mmol/L but it increased with 3 and 5 mmol/L of fructose. Adding 5 mmol/L glucose caused no change. Removal of luminal sodium blocked pHi recovery. With 5.5 mmol/L glucose, angiotensin II (1 pmol/L) did not affect the rate of pHi recovery (change, -1.1±0.5 fluorescent units/s; n=9) but it increased the rate of pHi recovery with 0.6 mmol/L glucose/5 mmol/L fructose (change, 4.0±2.2 fluorescent units/s; P<0.02; n=6). We conclude that fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. This mechanism is likely dependent on protein kinase C. These results may partially explain the mechanism by which a fructose diet induces hypertension.
近曲小管通过 Na/H 交换器 3 重吸收 60%至 70%的液体和钠以及大部分过滤的碳酸氢盐。增强的近曲小管转运与高血压有关。我们的发现表明,富含果糖的饮食会导致盐敏感性。我们假设果糖刺激管腔 Na/H 交换活性,并使近端小管对血管紧张素 II 敏感。通过荧光单位/秒来测量大鼠近端小管中的 Na/H 交换,作为细胞内 pH(pHi)恢复的速率。用 5mmol/L 果糖替代 5mmol/L 葡萄糖增加了 pHi 恢复的速率(1.8±0.6 荧光单位/秒;P<0.02;n=8)。蛋白激酶 C 抑制剂 staurosporine 阻断了这种作用。我们研究了这种作用是否是由于添加了果糖或去除了葡萄糖。首先在存在 0.6mmol/L 葡萄糖的情况下测试了 pHi 恢复的基础速率,并在第二阶段添加了 1、3 或 5mmol/L 的果糖。pHi 恢复的速率没有随 1mmol/L 的果糖而改变,但随 3mmol/L 和 5mmol/L 的果糖而增加。添加 5mmol/L 的葡萄糖没有引起变化。去除管腔中的钠阻断了 pHi 恢复。在 5.5mmol/L 葡萄糖的情况下,血管紧张素 II(1pmol/L)不影响 pHi 恢复的速率(变化,-1.1±0.5 荧光单位/秒;n=9),但它增加了 0.6mmol/L 葡萄糖/5mmol/L 果糖时的 pHi 恢复速率(变化,4.0±2.2 荧光单位/秒;P<0.02;n=6)。我们得出结论,果糖刺激 Na/H 交换活性并使近端小管对血管紧张素 II 敏感。这种机制可能依赖于蛋白激酶 C。这些结果可能部分解释了富含果糖的饮食诱导高血压的机制。