Borcea Ciprian S, Streinu Ileana
Department of Mathematics, Rider University, Lawrenceville, NJ, USA.
Department of Computer Science Smith College, Northampton, MA, USA.
R Soc Open Sci. 2022 Aug 31;9(8):220765. doi: 10.1098/rsos.220765. eCollection 2022 Aug.
The auxetic structures considered in this paper are three-dimensional periodic bar-and-joint frameworks. We start with the specific purpose of obtaining an auxetic design with underlying periodic graph of low valency. Adapting a general methodology, we produce an initial framework with valency seven and one degree of freedom. Then, we describe a saturation process, whereby edge orbits are added up to valency 16, with no alteration of the deformation path. This is reflected in a large dimension for the space of periodic self-stresses. The saturated version has higher crystallographic symmetry and allows a precise description of the deformation trajectory. Reducing saturation by adequate removal of edge orbits results in vast numbers of distinct auxetic designs which obey the same kinematics.
本文所考虑的负泊松比结构是三维周期性杆-节点框架。我们从获得具有低价潜在周期图的负泊松比设计这一特定目的出发。采用一种通用方法,我们生成了一个具有七价和一个自由度的初始框架。然后,我们描述了一个饱和过程,通过该过程,边轨道被添加至十六价,而变形路径不变。这反映在周期性自应力空间的一个大维度上。饱和版本具有更高的晶体学对称性,并允许对变形轨迹进行精确描述。通过适当去除边轨道来降低饱和度会产生大量遵循相同运动学的不同负泊松比设计。