Suppr超能文献

B 细胞淋巴瘤基因调控网络:推断方法间的生物学一致性。

B-cell lymphoma gene regulatory networks: biological consistency among inference methods.

机构信息

Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK.

Institute for Bioinformatics and Translational Research, UMIT Hall in Tirol, Austria.

出版信息

Front Genet. 2013 Dec 16;4:281. doi: 10.3389/fgene.2013.00281. eCollection 2013.

Abstract

Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we conduct a structural and a functional analysis of B-cell lymphoma GRNs that were inferred using 3 mutual information-based GRN inference methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level, we find that the inferred B-cell lymphoma GRNs show major differences. However, on the edge-level and the functional-level-that are more important for our biological understanding-the B-cell lymphoma GRNs were highly similar among each other. Also, the ranks of the degree centrality values and major hub genes in the inferred networks are highly conserved as well. Interestingly, the major hub genes of all GRNs are associated with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and Aracne, representing prominent targets for signaling pathways. Finally, we describe the functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory networks. Our study shows that these GRNs that are inferred from large-scale gene expression data are promising for the identification of novel candidate interactions and pathways that play a key role in the underlying mechanisms driving cancer hallmarks. Overall, our comparative analysis reveals that these GRNs inferred with considerably different inference methods contain large amounts of consistent, method independent, biological information.

摘要

尽管近年来已经开发出许多基因调控网络(GRN)推断方法,但在常规实践中,对于我们对大规模基因表达数据的总体理解,这些方法的应用、使用和产生的 GRN 的生物学意义仍然不清楚。在我们的研究中,我们对使用 3 种基于互信息的 GRN 推断方法(C3Net、BC3Net 和 Aracne)推断出的 B 细胞淋巴瘤 GRN 进行了结构和功能分析。从全局水平的比较分析中,我们发现推断出的 B 细胞淋巴瘤 GRN 存在显著差异。然而,在更有利于我们生物学理解的边缘水平和功能水平上,B 细胞淋巴瘤 GRN 之间非常相似。此外,推断网络中节点度中心值和主要枢纽基因的排名也高度保守。有趣的是,所有 GRN 的主要枢纽基因都与 G 蛋白偶联受体途径、细胞间信号转导和细胞周期相关。这意味着,C3Net、BC3Net 和 Aracne 可以高度一致地推断出 GRN 的枢纽基因,这些基因代表了信号通路的重要靶点。最后,我们描述了 C3Net、BC3Net 和 Aracne 基因调控网络之间的功能和结构关系。我们的研究表明,从大规模基因表达数据推断出的这些 GRN 对于识别新的候选相互作用和途径具有重要意义,这些途径在驱动癌症特征的潜在机制中起着关键作用。总体而言,我们的比较分析表明,这些使用差异极大的推断方法推断出的 GRN 包含大量一致的、方法独立的生物学信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53e4/3864360/0e1069e70d6e/fgene-04-00281-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验