Suppr超能文献

肾脏钾离子和钠离子处理的功能耦合在钠离子充足的小鼠中导致高血压。

Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice.

作者信息

Vitzthum Helga, Seniuk Anika, Schulte Laura Helene, Müller Maxie Luise, Hetz Hannah, Ehmke Heimo

机构信息

Department of Cellular and Integrative Physiology, Centre for Experimental Medicine, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.

出版信息

J Physiol. 2014 Mar 1;592(5):1139-57. doi: 10.1113/jphysiol.2013.266924. Epub 2014 Jan 6.

Abstract

A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased.

摘要

包括无活性赖氨酸激酶(WNKs)、Ste20相关脯氨酸/丙氨酸富含激酶(SPAK)和血清/糖皮质激素调节激酶1(Sgk1)在内的激酶网络,对于远端肾单位中钾离子(K+)和钠离子(Na+)转运的独立调节至关重要。血管紧张素II被认为是一种关键激素,可协调这些激酶在高钾血症时从钾分泌转换为血管内容量减少时的钠重吸收,从而将电解质和血压稳态的干扰降至最低。然而,尚不清楚在高钠摄入期间钾离子和钠离子转运是如何调节的,高钠摄入与血管紧张素II水平降低和远端肾小管高钠负荷有关。因此,我们研究了在钠充足的小鼠中,钾摄入量大幅变化时的综合血压、肾脏、激素以及基因和蛋白质表达反应。低钾和高钾摄入均会升高血压并导致钠潴留。低钾摄入伴随着氯化钠协同转运蛋白(NCC)及其激活激酶SPAK的上调,抑制NCC可使血压恢复正常。肾脏反应不受血管紧张素AT1受体拮抗剂的影响,表明低钾摄入通过一种不依赖血管紧张素的作用模式激活远端肾单位。高钾摄入与血浆醛固酮浓度升高以及上皮钠通道(ENaC)及其激活激酶Sgk1的上调有关。令人惊讶的是,即使在ENaC或盐皮质激素受体拮抗剂存在的情况下,高钾摄入仍会升高血压,这表明存在不依赖醛固酮的机制。这些发现表明,在钠充足的状态下,钾摄入量的变化会诱导远端肾单位发生特定的分子和功能适应性变化,从而导致肾脏对钾和钠处理的功能耦合,当钾摄入量受到限制或过度增加时,会导致钠潴留和高血压。

相似文献

1
Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice.
J Physiol. 2014 Mar 1;592(5):1139-57. doi: 10.1113/jphysiol.2013.266924. Epub 2014 Jan 6.
3
Impaired distal renal potassium handling in streptozotocin-induced diabetic mice.
Am J Physiol Renal Physiol. 2024 Jul 1;327(1):F158-F170. doi: 10.1152/ajprenal.00240.2023. Epub 2024 May 23.
4
Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.
Am J Physiol Renal Physiol. 2009 Sep;297(3):F704-12. doi: 10.1152/ajprenal.00030.2009. Epub 2009 Jul 1.
6
K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F389-96. doi: 10.1152/ajprenal.90528.2008. Epub 2009 May 27.
7
New insights into the role of serum- and glucocorticoid-inducible kinase SGK1 in the regulation of renal function and blood pressure.
Curr Opin Nephrol Hypertens. 2005 Jan;14(1):59-66. doi: 10.1097/00041552-200501000-00010.
8
K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl- cotransporter.
Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1177-88. doi: 10.1152/ajprenal.00201.2013. Epub 2013 Aug 28.
9
MST3 Involvement in Na and K Homeostasis with Increasing Dietary Potassium Intake.
Int J Mol Sci. 2021 Jan 20;22(3):999. doi: 10.3390/ijms22030999.
10
Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology.
Pflugers Arch. 2022 Aug;474(8):869-884. doi: 10.1007/s00424-022-02732-5. Epub 2022 Jul 27.

引用本文的文献

2
Potassium supplementation and depletion during development of salt-sensitive hypertension in male and female SS rats.
JCI Insight. 2025 Apr 15;10(10). doi: 10.1172/jci.insight.181778. eCollection 2025 May 22.
3
High chloride induces aldosterone resistance in the distal nephron.
Acta Physiol (Oxf). 2025 Jan;241(1):e14246. doi: 10.1111/apha.14246. Epub 2024 Oct 24.
4
Macrophage SPAK deletion limits a low potassium-induced kidney inflammatory program.
Am J Physiol Renal Physiol. 2024 Nov 1;327(5):F899-F909. doi: 10.1152/ajprenal.00175.2024. Epub 2024 Sep 19.
5
Low potassium activation of proximal mTOR/AKT signaling is mediated by Kir4.2.
Nat Commun. 2024 Jun 17;15(1):5144. doi: 10.1038/s41467-024-49562-w.
6
Potassium-Switch Signaling Pathway Dictates Acute Blood Pressure Response to Dietary Potassium.
Hypertension. 2024 May;81(5):1044-1054. doi: 10.1161/HYPERTENSIONAHA.123.22546. Epub 2024 Mar 11.
9
Modifying Dietary Sodium and Potassium Intake: An End to the 'Salt Wars'?
Hypertension. 2024 Mar;81(3):415-425. doi: 10.1161/HYPERTENSIONAHA.123.19487. Epub 2023 Oct 12.
10
Chronic kidney disease increases the susceptibility to negative effects of low and high potassium intake.
Nephrol Dial Transplant. 2024 Apr 26;39(5):795-807. doi: 10.1093/ndt/gfad220.

本文引用的文献

1
Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice.
Kidney Int. 2013 May;83(5):811-24. doi: 10.1038/ki.2013.14. Epub 2013 Feb 27.
2
Effects of angiotensin II on kinase-mediated sodium and potassium transport in the distal nephron.
Curr Opin Nephrol Hypertens. 2013 Jan;22(1):120-6. doi: 10.1097/MNH.0b013e32835b6551.
3
Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7929-34. doi: 10.1073/pnas.1200947109. Epub 2012 May 1.
4
Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway.
Pflugers Arch. 2012 Jun;463(6):853-63. doi: 10.1007/s00424-012-1104-0. Epub 2012 May 3.
5
Effects of K+-deficient diets with and without NaCl supplementation on Na+, K+, and H2O transporters' abundance along the nephron.
Am J Physiol Renal Physiol. 2012 Jul 1;303(1):F92-104. doi: 10.1152/ajprenal.00032.2012. Epub 2012 Apr 11.
6
The kidney and hypertension: lessons from mouse models.
Can J Cardiol. 2012 May;28(3):305-10. doi: 10.1016/j.cjca.2012.01.002. Epub 2012 Apr 5.
7
Independent regulation of Na+ and K+ balance by the kidney.
Med Princ Pract. 2012;21(2):101-14. doi: 10.1159/000332580. Epub 2011 Oct 25.
8
A SPAK isoform switch modulates renal salt transport and blood pressure.
Cell Metab. 2011 Sep 7;14(3):352-64. doi: 10.1016/j.cmet.2011.07.009.
9
Aldosterone paradox: differential regulation of ion transport in distal nephron.
Physiology (Bethesda). 2011 Apr;26(2):115-23. doi: 10.1152/physiol.00049.2010.
10
The WNK kinase network regulating sodium, potassium, and blood pressure.
J Am Soc Nephrol. 2011 Apr;22(4):605-14. doi: 10.1681/ASN.2010080827. Epub 2011 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验