Suppr超能文献

在微流控装置中通过电场和流场拉伸 DNA:计算机模拟设计的装置的实验验证。

Stretching DNA by electric field and flow field in microfluidic devices: An experimental validation to the devices designed with computer simulations.

机构信息

Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan.

出版信息

Biomicrofluidics. 2013 Feb 8;7(1):14109. doi: 10.1063/1.4790821. eCollection 2013.

Abstract

We examined the performance of three microfluidic devices for stretching DNA. The first device is a microchannel with a contraction, and the remaining two are the modifications to the first. The modified designs were made with the help of computer simulations [C. C. Hsieh and T. H. Lin, Biomicrofluidics 5(4), 044106 (2011) and C. C. Hsieh, T. H. Lin, and C. D. Huang, Biomicrofluidics 6, 044105 (2012)] and they were optimized for operating with electric field. In our experiments, we first used DC electric field to stretch DNA. However, the experimental results were not even in qualitative agreement with our simulations. More detailed investigation revealed that DNA molecules adopt a globular conformation in high DC field and therefore become more difficult to stretch. Owing to the similarity between flow field and electric field, we turned to use flow field to stretch DNA with the same devices. The evolution patterns of DNA conformation in flow field were found qualitatively the same as our prediction based on electric field. We analyzed the maximum values, the evolution and the distributions of DNA extension at different Deborah number in each device. We found that the shear and the hydrodynamic interaction have significant influence on the performance of the devices.

摘要

我们研究了三种用于拉伸 DNA 的微流控设备的性能。第一种设备是带有收缩的微通道,其余两种是对第一种设备的改进。改进设计是在计算机模拟的帮助下完成的 [C. C. Hsieh 和 T. H. Lin, Biomicrofluidics 5(4), 044106 (2011) 和 C. C. Hsieh, T. H. Lin, 和 C. D. Huang, Biomicrofluidics 6, 044105 (2012)],并针对电场操作进行了优化。在我们的实验中,我们首先使用直流电场来拉伸 DNA。然而,实验结果甚至与我们的模拟没有定性的一致性。更详细的研究表明,DNA 分子在高直流电场中采用球状构象,因此变得更难拉伸。由于流场和电场之间的相似性,我们转而使用相同的设备通过流场来拉伸 DNA。在流场中 DNA 构象的演化模式被发现与我们基于电场的预测定性一致。我们分析了在每个设备中不同 Deborah 数下 DNA 延伸的最大值、演化和分布。我们发现剪切和流体动力相互作用对设备的性能有显著影响。

相似文献

2
Simulations of DNA stretching by flow field in microchannels with complex geometry.
Biomicrofluidics. 2014 Feb 7;8(1):014106. doi: 10.1063/1.4863802. eCollection 2014 Jan.
3
Simulation guided design of a microfluidic device for electrophoretic stretching of DNA.
Biomicrofluidics. 2012 Oct 24;6(4):44105. doi: 10.1063/1.4763559. eCollection 2012.
5
Electric-field-induced stretching of surface-tethered polyelectrolytes in a microchannel.
Phys Rev E. 2017 Sep;96(3-1):032503. doi: 10.1103/PhysRevE.96.032503. Epub 2017 Sep 27.
8
DNA fragmentation in a steady shear flow.
Biomicrofluidics. 2022 Oct 27;16(5):054109. doi: 10.1063/5.0109361. eCollection 2022 Sep.
9
Regulation of DNA conformations and dynamics in flows with hybrid field microfluidics.
Biomicrofluidics. 2012 Oct 24;6(4):44103. doi: 10.1063/1.4762852. eCollection 2012.
10
Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows.
Lab Chip. 2009 Aug 21;9(16):2348-55. doi: 10.1039/b902292a. Epub 2009 Jun 10.

引用本文的文献

1
Polyelectrolyte in Electric Field: Disparate Conformational Behavior along an Aminopolysaccharide Chain.
ACS Omega. 2020 May 19;5(21):12016-12026. doi: 10.1021/acsomega.0c00164. eCollection 2020 Jun 2.
2
Collapse of DNA under alternating electric fields.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012714. doi: 10.1103/PhysRevE.92.012714. Epub 2015 Jul 20.
3
Simulations of DNA stretching by flow field in microchannels with complex geometry.
Biomicrofluidics. 2014 Feb 7;8(1):014106. doi: 10.1063/1.4863802. eCollection 2014 Jan.

本文引用的文献

1
Simulation guided design of a microfluidic device for electrophoretic stretching of DNA.
Biomicrofluidics. 2012 Oct 24;6(4):44105. doi: 10.1063/1.4763559. eCollection 2012.
2
Polymer stretch in two-phase microfluidics: Effect of wall wettability.
Biomicrofluidics. 2012 Jun 13;6(2):24130. doi: 10.1063/1.4729129. Print 2012 Jun.
3
Simulation of conformational preconditioning strategies for electrophoretic stretching of DNA in a microcontraction.
Biomicrofluidics. 2011 Dec;5(4):44106-4410617. doi: 10.1063/1.3655565. Epub 2011 Nov 10.
4
Compression and self-entanglement of single DNA molecules under uniform electric field.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16153-8. doi: 10.1073/pnas.1105547108. Epub 2011 Sep 12.
5
DNA methylation profiling in nanochannels.
Biomicrofluidics. 2011 Sep;5(3):34106-341068. doi: 10.1063/1.3613671. Epub 2011 Jul 25.
7
DNA electrophoresis in a sparse ordered post array.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061904. doi: 10.1103/PhysRevE.79.061904. Epub 2009 Jun 4.
8
Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows.
Lab Chip. 2009 Aug 21;9(16):2348-55. doi: 10.1039/b902292a. Epub 2009 Jun 10.
9
DNA Molecules in Microfluidic Oscillatory Flow.
Macromolecules. 2005;38(15):6680-6687. doi: 10.1021/ma050238d.
10
Design and numerical simulation of a DNA electrophoretic stretching device.
Lab Chip. 2007 Feb;7(2):213-25. doi: 10.1039/b612021k. Epub 2006 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验