Suppr超能文献

肿瘤患者外周血中循环肿瘤细胞的空间梯度分离和回收。

Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients.

机构信息

Department of Materials Science and Engineering, Peking University, Beijing 100871, China.

Laboratory for Nanobiomedicine and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.

出版信息

Biomicrofluidics. 2013 Jun 6;7(3):34109. doi: 10.1063/1.4808456. eCollection 2013.

Abstract

For cancer patients, the enumeration of rare circulating tumor cells (CTCs) in peripheral blood is a strong prognostic indicator of the severity of the cancer; for the general population, the capture of CTCs is needed for use as a clinical tool for cancer screening, early detection, and treatment assessment. Here, we present a fast, high-purity (∼90%) and high-efficiency (>90%) method for the segregation and undamaged recovery of CTCs using a spatially gradated microfluidic chip. Further, by lysing the red blood cells we achieved not only a significant reduction in the overall processing time but also mitigated the blood clogging problem commonly encountered in microfluidic-based CTC isolation systems. To clinically validate the chip, we employed it to detect and capture CTCs from 10 liver cancer patients. Positive CTC enumeration was observed in all the blood samples, and the readings ranged from a low of 1-2 CTCs (1 patient) to a high of >20 CTCs (2 patients) with the balance having 3-20 CTCs per 3-ml blood sample. The work here indicates that our system can be developed for use in cancer screening, metastatic assessment, and chemotherapeutic response and for pharmacological and genetic evaluation of single CTCs.

摘要

对于癌症患者,外周血中稀有循环肿瘤细胞(CTC)的计数是癌症严重程度的一个强有力的预后指标;对于普通人群,需要捕获 CTC 作为癌症筛查、早期检测和治疗评估的临床工具。在这里,我们提出了一种快速、高纯度(~90%)和高效率(>90%)的方法,使用空间梯度微流控芯片分离和无损回收 CTC。此外,通过裂解红细胞,我们不仅显著缩短了整体处理时间,还减轻了微流控 CTC 分离系统中常见的血液堵塞问题。为了临床验证芯片,我们使用它从 10 名肝癌患者中检测和捕获 CTC。在所有血液样本中都观察到了阳性 CTC 计数,读数范围从低至 1-2 个 CTC(1 名患者)到高至 >20 个 CTC(2 名患者),其余患者每个 3ml 血液样本中有 3-20 个 CTC。这项工作表明,我们的系统可以用于癌症筛查、转移评估以及化疗反应,并用于单个 CTC 的药理学和遗传学评估。

相似文献

1
Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients.
Biomicrofluidics. 2013 Jun 6;7(3):34109. doi: 10.1063/1.4808456. eCollection 2013.
4
Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.
Acc Chem Res. 2014 Oct 21;47(10):2941-50. doi: 10.1021/ar5001617. Epub 2014 Aug 11.
5
Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip.
Biosens Bioelectron. 2014 Jan 15;51:213-8. doi: 10.1016/j.bios.2013.07.044. Epub 2013 Jul 31.
10
Isolation of rare circulating tumour cells in cancer patients by microchip technology.
Nature. 2007 Dec 20;450(7173):1235-9. doi: 10.1038/nature06385.

引用本文的文献

1
NanoRidge filters: Fabrication strategies and performance optimization for nano-scale microfluidic particle filtration.
Biomicrofluidics. 2024 Sep 5;18(5):054102. doi: 10.1063/5.0210149. eCollection 2024 Sep.
4
Tumor circulome in the liquid biopsies for digestive tract cancer diagnosis and prognosis.
World J Clin Cases. 2020 Jun 6;8(11):2066-2080. doi: 10.12998/wjcc.v8.i11.2066.
5
Evaluation of Circulating Endometrial Cells as a Biomarker for Endometriosis.
Chin Med J (Engl). 2017 Oct 5;130(19):2339-2345. doi: 10.4103/0366-6999.215325.
6
Microfluidic assay of circulating endothelial cells in coronary artery disease patients with angina pectoris.
PLoS One. 2017 Jul 13;12(7):e0181249. doi: 10.1371/journal.pone.0181249. eCollection 2017.
7
Highly-sensitive capture of circulating tumor cells using micro-ellipse filters.
Sci Rep. 2017 Apr 4;7(1):610. doi: 10.1038/s41598-017-00232-6.
8
Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.
Biomech Model Mechanobiol. 2017 Apr;16(2):597-610. doi: 10.1007/s10237-016-0839-5. Epub 2016 Oct 13.
10
Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces.
Biomicrofluidics. 2015 Dec 8;9(6):061501. doi: 10.1063/1.4936300. eCollection 2015 Nov.

本文引用的文献

2
Isolation and retrieval of circulating tumor cells using centrifugal forces.
Sci Rep. 2013;3:1259. doi: 10.1038/srep01259. Epub 2013 Feb 12.
3
4
Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
Lab Chip. 2011 Jun 7;11(11):1870-8. doi: 10.1039/c0lc00633e. Epub 2011 Apr 19.
5
3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood.
Biomed Microdevices. 2011 Feb;13(1):203-13. doi: 10.1007/s10544-010-9485-3.
6
Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18392-7. doi: 10.1073/pnas.1012539107. Epub 2010 Oct 7.
8
Microdevice for the isolation and enumeration of cancer cells from blood.
Biomed Microdevices. 2009 Aug;11(4):883-92. doi: 10.1007/s10544-009-9305-9.
9
Isolation of rare cells from cell mixtures by dielectrophoresis.
Electrophoresis. 2009 Apr;30(8):1388-98. doi: 10.1002/elps.200800373.
10
Isolation of rare circulating tumour cells in cancer patients by microchip technology.
Nature. 2007 Dec 20;450(7173):1235-9. doi: 10.1038/nature06385.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验