Suppr超能文献

异种患者2.0:重编程患者来源的癌症基因组的表观遗传景观。

Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.

作者信息

Menendez Javier A, Alarcón Tomás, Corominas-Faja Bruna, Cuyàs Elisabet, López-Bonet Eugeni, Martin Angel G, Vellon Luciano

机构信息

Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain; Molecular Oncology Group; Girona Biomedical Research Institute (IDIBGI); Girona, Spain.

Computational & Mathematical Biology Research Group; Centre de Recerca Matemàtica (CRM); Barcelona, Spain.

出版信息

Cell Cycle. 2014;13(3):358-70. doi: 10.4161/cc.27770. Epub 2014 Jan 9.

Abstract

In the science-fiction thriller film Minority Report, a specialized police department called "PreCrime" apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called "PreCogs". We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized "stemotoxic" cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge "chromosome therapies" aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors following the activation of phenotypic copies of specific cancer diseases might crucially evaluate a "reprogramming cure" for cancer. A new era of xenopatients 2.0 generated via nuclear reprogramming of the epigenetic landscapes of patient-derived cancer genomes might revolutionize the current personalized translational platforms in cancer research.

摘要

在科幻惊悚电影《少数派报告》中,一个名为“预防犯罪”的特殊警察部门逮捕那些根据3个经过基因改造的人类“预知者”所提供的预知信息提前识别出的罪犯。我们提出,山中伸弥干细胞技术可以类似地用于对直接从癌症患者身上获取的肿瘤细胞进行(表观)基因重编程,并创建自我进化的个性化转化平台,以预测个体肿瘤的进化轨迹。这一策略会产生大量干细胞群体,并捕获受影响个体的癌症基因组,即预知者诱导多能干细胞(iPS)癌细胞,这些细胞可立即用于实验操作,包括针对个性化“干细胞毒性”癌症药物的药理筛选。将预知者-iPS癌细胞原位注射到免疫缺陷小鼠的相应靶组织后(即“预防犯罪”-iPS小鼠化身),它们会重新分化,这个体内模型将经历特定的癌症阶段,以直接探索其生物学特性,用于药物筛选、诊断以及个体患者的个性化治疗。预知者/“预防犯罪”-iPS方法可以进行一系列比较,以直接观察癌症-iPS细胞系与源自相同人类遗传背景的正常iPS细胞系之间的变化。对预知者-iPS细胞进行基因组编辑可以创建转化平台,直接研究基因组表达变化与细胞恶性转化之间的联系,这种联系在很大程度上不受遗传和表观遗传噪声的影响,并为针对癌症非整倍体的前沿“染色体疗法”提供原理验证证据。我们或许可以推断出能够纠正重编程癌细胞群体致瘤特性并在体内使恶性表型正常化的表观遗传标记。通过对源自患者的癌症基因组的表观遗传景观进行核重编程而产生的2.0版异种患者新时代,可能会彻底改变当前癌症研究中的个性化转化平台。

相似文献

1
Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.
Cell Cycle. 2014;13(3):358-70. doi: 10.4161/cc.27770. Epub 2014 Jan 9.
3
Cancer epigenetics: from disruption of differentiation programs to the emergence of cancer stem cells.
Cold Spring Harb Symp Quant Biol. 2010;75:251-8. doi: 10.1101/sqb.2010.75.007. Epub 2010 Nov 3.
4
Induced pluripotent stem cells: what lies beyond the paradigm shift.
Exp Biol Med (Maywood). 2010 Feb;235(2):148-58. doi: 10.1258/ebm.2009.009267.
5
Epigenetic reprogramming and induced pluripotency.
Development. 2009 Feb;136(4):509-23. doi: 10.1242/dev.020867.
8
Reprogramming cancer cells to pluripotency: an experimental tool for exploring cancer epigenetics.
Epigenetics. 2014 Jun;9(6):798-802. doi: 10.4161/epi.28600. Epub 2014 Mar 31.
9
Current status in cancer cell reprogramming and its clinical implications.
J Cancer Res Clin Oncol. 2017 Mar;143(3):371-383. doi: 10.1007/s00432-016-2258-5. Epub 2016 Sep 12.
10
Induced pluripotent stem cell technology for dissecting the cancer epigenome.
Cancer Sci. 2015 Oct;106(10):1251-6. doi: 10.1111/cas.12758. Epub 2015 Sep 25.

引用本文的文献

1
miR-34a exerts as a key regulator in the dedifferentiation of osteosarcoma via PAI-1-Sox2 axis.
Cell Death Dis. 2018 Jul 10;9(7):777. doi: 10.1038/s41419-018-0778-4.
2
Oncometabolic Nuclear Reprogramming of Cancer Stemness.
Stem Cell Reports. 2016 Mar 8;6(3):273-83. doi: 10.1016/j.stemcr.2015.12.012. Epub 2016 Feb 11.
3
Differentiation and transdifferentiation potentials of cancer stem cells.
Oncotarget. 2015 Nov 24;6(37):39550-63. doi: 10.18632/oncotarget.6098.
5
Metabolic control of cancer cell stemness: Lessons from iPS cells.
Cell Cycle. 2015;14(24):3801-11. doi: 10.1080/15384101.2015.1022697.
6
In vitro human cell line models to predict clinical response to anticancer drugs.
Pharmacogenomics. 2015;16(3):273-85. doi: 10.2217/pgs.14.170.
7
Metabostemness: a new cancer hallmark.
Front Oncol. 2014 Sep 29;4:262. doi: 10.3389/fonc.2014.00262. eCollection 2014.
8
The nutritional phenome of EMT-induced cancer stem-like cells.
Oncotarget. 2014 Jun 30;5(12):3970-82. doi: 10.18632/oncotarget.2147.

本文引用的文献

1
Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era.
Reprod Fertil Dev. 2013;26(1):65-73. doi: 10.1071/RD13258.
2
Cancer stem cells, a fuzzy evolving concept: a cell population or a cell property?
Cell Cycle. 2013 Dec 15;12(24):3743-8. doi: 10.4161/cc.27305. Epub 2013 Nov 22.
4
Tumour heterogeneity and cancer cell plasticity.
Nature. 2013 Sep 19;501(7467):328-37. doi: 10.1038/nature12624.
5
Reprogramming in vivo produces teratomas and iPS cells with totipotency features.
Nature. 2013 Oct 17;502(7471):340-5. doi: 10.1038/nature12586. Epub 2013 Sep 11.
7
Epithelial ovarian cancer experimental models.
Oncogene. 2014 Jul 10;33(28):3619-33. doi: 10.1038/onc.2013.321. Epub 2013 Aug 12.
8
Reprogramming of human fibroblasts to pluripotency with lineage specifiers.
Cell Stem Cell. 2013 Sep 5;13(3):341-50. doi: 10.1016/j.stem.2013.06.019. Epub 2013 Jul 18.
9
Translating dosage compensation to trisomy 21.
Nature. 2013 Aug 15;500(7462):296-300. doi: 10.1038/nature12394. Epub 2013 Jul 17.
10
An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression.
Cell Rep. 2013 Jun 27;3(6):2088-99. doi: 10.1016/j.celrep.2013.05.036. Epub 2013 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验