Menendez Javier A, Corominas-Faja Bruna, Cuyàs Elisabet, García María G, Fernández-Arroyo Salvador, Fernández Agustín F, Joven Jorge, Fraga Mario F, Alarcón Tomás
ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Catalonia, Spain; Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, Edifici M2, E-17190 Salt, Girona, Spain.
Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain.
Stem Cell Reports. 2016 Mar 8;6(3):273-83. doi: 10.1016/j.stemcr.2015.12.012. Epub 2016 Feb 11.
By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the "energy barriers" separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells.
通过损害组蛋白去甲基化并将细胞锁定在易于重编程的状态,肿瘤代谢物可以部分模拟诱导多能干细胞的生成过程。我们采用系统生物学方法,将数学建模、计算与活细胞的概念验证研究相结合,发现肿瘤代谢物驱动的细胞核重编程的病理版本,仅需极少的干性转录因子核心,就能提高将已分化的上皮细胞去分化为干细胞样状态的速度和效率。我们的生物数学模型引入了核小体修饰和细胞分化基因的表观遗传调控,以解释肿瘤代谢物对细胞核重编程的直接影响,该模型表明,肿瘤代谢物显著降低了分隔非干细胞和干细胞吸引子的“能量屏障”,缩短了细胞核重编程的平均时间,并增加了干细胞占据的宏观状态吸引域的大小。这些发现确立了干性的肿瘤代谢性细胞核重编程这一概念,作为产生癌症干细胞样细胞的一种真正的代谢 - 表观遗传机制。