Julius-von-Sachs-Institut für Biowissenschaften der Universität Würzburg, Mittlerer Dallenbergweg 64, D 8700, Würzburg, Germany.
Photosynth Res. 1992 Dec;34(3):433-47. doi: 10.1007/BF00029817.
Chlorophyll fluorescence, light scattering, the electrochromic shift P515 and levels of some photosynthetic intermediates were measured in illuminated leaves. Oxygen and CO2 concentrations in the gas phase were varied in order to obtain information on control of Photosystem II activity under conditions such as produced by water stress, when stomatal closure restricts access of CO2 to the photosynthetic apparatus. Light scattering and energy-dependent fluorescence quenching indicated a high level of chloroplast energization under high intensity illumination even when linear electron transport was curtailed in CO2-free air or in 1% oxygen with 35 μll(-1) CO2. Calculations of the phosphorylation potential based on measurements of phosphoglycerate, dihydroxyacetone phosphate and NADP revealed ratios of intrathylakoid to extrathylakoid proton concentrations, which were only somewhat higher in air containing 35 μl l(-1) CO2 than in CO2-free air or 1% oxygen/35 μl l(-1) CO2. Anaerobic conditions prevented appreciable chloroplast energization. Acceptor-limitation of electron flow resulted in a high reduction level of the electron transport chain, which is characterized by decreased oxidation of P700, not only under anaerobic conditions, but also in air, when CO2 was absent, and in 1% oxygen, when the CO2 concentration was reduced to 35 μll(-1). Efficient control of electron transport was indicated by the photoaccumulation of P700 (+) at or close to the CO2 compensation point in air. It is proposed to require the interplay between photorespiratory and photosynthetic electron flows, electron flow to oxygen and cyclic electron flow. The field-indicating electrochromic shift (P515) measured as a rapid absorption decrease on switching the light off followed closely the extent of photoaccumulation of P700 (+) in the light.
在照光叶片中测定了叶绿素荧光、光散射、电致变色位移 P515 和某些光合中间产物的水平。改变气相中的氧和 CO2 浓度,以便在诸如由水胁迫引起的条件下获得关于光系统 II 活性控制的信息,此时气孔关闭限制 CO2 进入光合装置。光散射和能量依赖性荧光猝灭表明,即使在无 CO2 的空气中或在 1%氧气中用 35 μl l(-1) CO2 限制线性电子传递时,在高强度光照下叶绿体仍处于高度激发状态。基于磷酸甘油酸、二羟丙酮磷酸和 NADP 的测量,对磷酸化势能的计算表明,类囊体腔内质子与类囊体腔外质子的浓度比在含有 35 μl l(-1) CO2 的空气中仅比在无 CO2 的空气中或在 1%氧气/35 μl l(-1) CO2 中稍高。厌氧条件阻止了可观的叶绿体激发。电子流的受体限制导致电子传递链的高还原水平,其特征是 P700 的氧化减少,不仅在厌氧条件下,而且在无 CO2 的空气中,以及在 CO2 浓度降低至 35 μl l(-1)的 1%氧气中也是如此。电子传递的有效控制是由在空气中接近 CO2 补偿点的 P700 (+) 的光积累所指示的。建议需要光合作用和光呼吸电子流、电子流向氧和循环电子流之间的相互作用。作为关闭光时快速吸收减少而测量的场指示电致变色位移 (P515) 与光中 P700 (+) 的光积累程度密切相关。