Julius-von-Sachs-Institut für Biowissenschaften der Universität, Mittlerer Dallenbergweg 64, D-8700, Würzburg, Germany.
Photosynth Res. 1992 Dec;34(3):449-64. doi: 10.1007/BF00029818.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.
甘蓝型油菜叶片在空气或含低浓度二氧化碳和/或氧气的大气中,用不同光量子通量密度的红光和/或远红光,以及或不外加高强度红光的短脉冲进行照射。在没有二氧化碳的情况下,远红光比红光更能增加光散射,这是跨类囊体质子梯度的一个指标,尽管红光和远红光光束被平衡以激发光系统 II 达到相当程度的程度。在红色背景光下,远红光支持跨类囊体的电场,这如电致变色 P515 信号所指示的。降低气相中的氧气含量增加了远红光诱导的光散射,并导致红光诱导的小光散射信号的二次下降。无论激发方式如何,二氧化碳都抑制光诱导的散射响应。当二氧化碳水平降低到或低于二氧化碳补偿点,并且存在远红背景光时,给予红色和/或远红光背景光的高强度红光短脉冲仅在闪光后会引起可观的额外光散射。虽然脉冲诱导的光散射增加,非光化学荧光猝灭增加,F0 荧光降低,表明即使光系统 II 反应中心的醌受体 QA 大部分被氧化,激发能的无辐射耗散也会增加。这些观察表明,在适当的叶绿体电子传递链氧化还原平衡存在下,循环电子传递支持跨类囊体质子梯度,从而能够控制光系统 II 的活性。数据与保护光合作用机构免受光失活的关系进行了讨论。