Suppr超能文献

N-末端乙酰转移酶 A 活性丧失导致酿酒酵母中热不稳定核糖体蛋白的产生,并增加其周转率。

Loss of N-terminal acetyltransferase A activity induces thermally unstable ribosomal proteins and increases their turnover in Saccharomyces cerevisiae.

机构信息

Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Department of Biomedicine, University of Bergen, Bergen, Norway.

出版信息

Nat Commun. 2023 Jul 27;14(1):4517. doi: 10.1038/s41467-023-40224-x.

Abstract

Protein N-terminal (Nt) acetylation is one of the most abundant modifications in eukaryotes, covering ~50-80 % of the proteome, depending on species. Cells with defective Nt-acetylation display a wide array of phenotypes such as impaired growth, mating defects and increased stress sensitivity. However, the pleiotropic nature of these effects has hampered our understanding of the functional impact of protein Nt-acetylation. The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here we employ a multi-dimensional proteomics approach to analyze Saccharomyces cerevisiae lacking NatA activity, which causes global proteome remodeling. Pulsed-SILAC experiments reveals that NatA-deficient strains consistently increase degradation of ribosomal proteins compared to wild type. Explaining this phenomenon, thermal proteome profiling uncovers decreased thermostability of ribosomes in NatA-knockouts. Our data are in agreement with a role for Nt-acetylation in promoting stability for parts of the proteome by enhancing the avidity of protein-protein interactions and folding.

摘要

蛋白质 N 端(Nt)乙酰化是真核生物中最丰富的修饰之一,根据物种的不同,覆盖了约 50-80%的蛋白质组。Nt-乙酰化缺陷的细胞表现出广泛的表型,如生长受损、交配缺陷和对压力的敏感性增加。然而,这些影响的多效性阻碍了我们对蛋白质 Nt 乙酰化功能影响的理解。在整个真核生物界中负责 Nt 乙酰化的主要酶是 N 端乙酰转移酶 NatA。在这里,我们采用多维蛋白质组学方法来分析缺乏 NatA 活性的酿酒酵母,这会导致整个蛋白质组的重塑。脉冲 SILAC 实验表明,与野生型相比,NatA 缺陷菌株中核糖体蛋白的降解始终增加。解释这一现象,热蛋白质组学分析揭示了 NatA 敲除菌株中核糖体的热稳定性降低。我们的数据与 Nt 乙酰化通过增强蛋白质-蛋白质相互作用和折叠的亲和力来促进部分蛋白质组稳定性的作用一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e42b/10374663/914bc525c663/41467_2023_40224_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验