Suppr超能文献

病例对照关联研究中次要性状的统一分析

Unified Analysis of Secondary Traits in Case-Control Association Studies.

作者信息

Ghosh Arpita, Wright Fred A, Zou Fei

机构信息

Public Health Foundation of India, New Delhi, India.

Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA.

出版信息

J Am Stat Assoc. 2013;108(502). doi: 10.1080/01621459.2013.793121.

Abstract

It has been repeatedly shown that in case-control association studies, analysis of a secondary trait which ignores the original sampling scheme can produce highly biased risk estimates. Although a number of approaches have been proposed to properly analyze secondary traits, most approaches fail to reproduce the marginal logistic model assumed for the original case-control trait and/or do not allow for interaction between secondary trait and genotype marker on primary disease risk. In addition, the flexible handling of covariates remains challenging. We present a general retrospective likelihood framework to perform association testing for both binary and continuous secondary traits which respects marginal models and incorporates the interaction term. We provide a computational algorithm, based on a reparameterized approximate profile likelihood, for obtaining the maximum likelihood (ML) estimate and its standard error for the genetic effect on secondary trait, in presence of covariates. For completeness we also present an alternative pseudo-likelihood method for handling covariates. We describe extensive simulations to evaluate the performance of the ML estimator in comparison with the pseudo-likelihood and other competing methods.

摘要

反复表明,在病例对照关联研究中,对次要性状进行分析时若忽略原始抽样方案,可能会产生高度有偏的风险估计。尽管已提出多种方法来正确分析次要性状,但大多数方法无法重现为原始病例对照性状假设的边际逻辑模型,和/或不考虑次要性状与基因型标记对原发性疾病风险的相互作用。此外,协变量的灵活处理仍然具有挑战性。我们提出了一个通用的回顾性似然框架,用于对二元和连续次要性状进行关联检验,该框架尊重边际模型并纳入了交互项。我们提供了一种基于重新参数化的近似轮廓似然的计算算法,用于在存在协变量的情况下获得次要性状遗传效应的最大似然(ML)估计及其标准误差。为了完整性,我们还提出了一种处理协变量的替代伪似然方法。我们描述了广泛的模拟,以评估ML估计器与伪似然及其他竞争方法相比的性能。

相似文献

9
Augmented pseudo-likelihood estimation for two-phase studies.两阶段研究的增强型伪似然估计。
Stat Methods Med Res. 2020 Feb;29(2):344-358. doi: 10.1177/0962280219833415. Epub 2019 Mar 5.

引用本文的文献

2
Semiparametrically efficient estimation in quantile regression of secondary analysis.二次分析分位数回归中的半参数有效估计
J R Stat Soc Series B Stat Methodol. 2018 Sep;80(4):625-648. doi: 10.1111/rssb.12272. Epub 2018 Apr 14.
9
A General and Robust Framework for Secondary Traits Analysis.一种用于次要性状分析的通用且稳健的框架。
Genetics. 2016 Apr;202(4):1329-43. doi: 10.1534/genetics.115.181073. Epub 2016 Feb 19.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验