Suppr超能文献

病例对照关联研究中次要性状的统一分析

Unified Analysis of Secondary Traits in Case-Control Association Studies.

作者信息

Ghosh Arpita, Wright Fred A, Zou Fei

机构信息

Public Health Foundation of India, New Delhi, India.

Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA.

出版信息

J Am Stat Assoc. 2013;108(502). doi: 10.1080/01621459.2013.793121.

Abstract

It has been repeatedly shown that in case-control association studies, analysis of a secondary trait which ignores the original sampling scheme can produce highly biased risk estimates. Although a number of approaches have been proposed to properly analyze secondary traits, most approaches fail to reproduce the marginal logistic model assumed for the original case-control trait and/or do not allow for interaction between secondary trait and genotype marker on primary disease risk. In addition, the flexible handling of covariates remains challenging. We present a general retrospective likelihood framework to perform association testing for both binary and continuous secondary traits which respects marginal models and incorporates the interaction term. We provide a computational algorithm, based on a reparameterized approximate profile likelihood, for obtaining the maximum likelihood (ML) estimate and its standard error for the genetic effect on secondary trait, in presence of covariates. For completeness we also present an alternative pseudo-likelihood method for handling covariates. We describe extensive simulations to evaluate the performance of the ML estimator in comparison with the pseudo-likelihood and other competing methods.

摘要

反复表明,在病例对照关联研究中,对次要性状进行分析时若忽略原始抽样方案,可能会产生高度有偏的风险估计。尽管已提出多种方法来正确分析次要性状,但大多数方法无法重现为原始病例对照性状假设的边际逻辑模型,和/或不考虑次要性状与基因型标记对原发性疾病风险的相互作用。此外,协变量的灵活处理仍然具有挑战性。我们提出了一个通用的回顾性似然框架,用于对二元和连续次要性状进行关联检验,该框架尊重边际模型并纳入了交互项。我们提供了一种基于重新参数化的近似轮廓似然的计算算法,用于在存在协变量的情况下获得次要性状遗传效应的最大似然(ML)估计及其标准误差。为了完整性,我们还提出了一种处理协变量的替代伪似然方法。我们描述了广泛的模拟,以评估ML估计器与伪似然及其他竞争方法相比的性能。

相似文献

1
Unified Analysis of Secondary Traits in Case-Control Association Studies.
J Am Stat Assoc. 2013;108(502). doi: 10.1080/01621459.2013.793121.
3
Mendelian randomization studies for a continuous exposure under case-control sampling.
Am J Epidemiol. 2015 Mar 15;181(6):440-9. doi: 10.1093/aje/kwu291. Epub 2015 Feb 21.
4
A flexible copula-based approach for the analysis of secondary phenotypes in ascertained samples.
Stat Med. 2020 Feb 28;39(5):517-543. doi: 10.1002/sim.8416. Epub 2019 Dec 23.
5
Approximate and Pseudo-Likelihood Analysis for Logistic Regression Using External Validation Data to Model Log Exposure.
J Agric Biol Environ Stat. 2013 Mar 1;18(1):22-38. doi: 10.1007/s13253-012-0115-9.
7
Genome-wide association scans for secondary traits using case-control samples.
Genet Epidemiol. 2009 Dec;33(8):717-28. doi: 10.1002/gepi.20424.
8
Validity of using ad hoc methods to analyze secondary traits in case-control association studies.
Genet Epidemiol. 2016 Dec;40(8):732-743. doi: 10.1002/gepi.21994. Epub 2016 Sep 26.
9
Augmented pseudo-likelihood estimation for two-phase studies.
Stat Methods Med Res. 2020 Feb;29(2):344-358. doi: 10.1177/0962280219833415. Epub 2019 Mar 5.
10
A novel association test for multiple secondary phenotypes from a case-control GWAS.
Genet Epidemiol. 2017 Jul;41(5):413-426. doi: 10.1002/gepi.22045. Epub 2017 Apr 10.

引用本文的文献

2
Semiparametrically efficient estimation in quantile regression of secondary analysis.
J R Stat Soc Series B Stat Methodol. 2018 Sep;80(4):625-648. doi: 10.1111/rssb.12272. Epub 2018 Apr 14.
4
CONTROL FUNCTION ASSISTED IPW ESTIMATION WITH A SECONDARY OUTCOME IN CASE-CONTROL STUDIES.
Stat Sin. 2017 Apr;27(2):785-804. doi: 10.5705/ss.202015.0116.
5
A novel association test for multiple secondary phenotypes from a case-control GWAS.
Genet Epidemiol. 2017 Jul;41(5):413-426. doi: 10.1002/gepi.22045. Epub 2017 Apr 10.
6
Secondary phenotype analysis in ascertained family designs: application to the Leiden longevity study.
Stat Med. 2017 Jun 30;36(14):2288-2301. doi: 10.1002/sim.7281. Epub 2017 Mar 16.
8
Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study.
Neuroimage. 2017 Feb 1;146:983-1002. doi: 10.1016/j.neuroimage.2016.09.055. Epub 2016 Oct 4.
9
A General and Robust Framework for Secondary Traits Analysis.
Genetics. 2016 Apr;202(4):1329-43. doi: 10.1534/genetics.115.181073. Epub 2016 Feb 19.
10
A cautionary note on using secondary phenotypes in neuroimaging genetic studies.
Neuroimage. 2015 Nov 1;121:136-45. doi: 10.1016/j.neuroimage.2015.07.058. Epub 2015 Jul 26.

本文引用的文献

1
Analysis of secondary phenotype involving the interactive effect of the secondary phenotype and genetic variants on the primary disease.
Ann Hum Genet. 2012 Nov;76(6):484-99. doi: 10.1111/j.1469-1809.2012.00725.x. Epub 2012 Aug 10.
3
A Gaussian copula approach for the analysis of secondary phenotypes in case-control genetic association studies.
Biostatistics. 2012 Jul;13(3):497-508. doi: 10.1093/biostatistics/kxr025. Epub 2011 Sep 19.
4
Estimation of odds ratios of genetic variants for the secondary phenotypes associated with primary diseases.
Genet Epidemiol. 2011 Apr;35(3):190-200. doi: 10.1002/gepi.20568. Epub 2011 Feb 9.
6
Genome-wide association scans for secondary traits using case-control samples.
Genet Epidemiol. 2009 Dec;33(8):717-28. doi: 10.1002/gepi.20424.
7
Proper analysis of secondary phenotype data in case-control association studies.
Genet Epidemiol. 2009 Apr;33(3):256-65. doi: 10.1002/gepi.20377.
8
The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer.
J Natl Cancer Inst. 2008 Nov 5;100(21):1552-6. doi: 10.1093/jnci/djn363. Epub 2008 Oct 28.
9
Estimating odds ratios in genome scans: an approximate conditional likelihood approach.
Am J Hum Genet. 2008 May;82(5):1064-74. doi: 10.1016/j.ajhg.2008.03.002. Epub 2008 Apr 24.
10
Genome-wide association analysis identifies 20 loci that influence adult height.
Nat Genet. 2008 May;40(5):575-83. doi: 10.1038/ng.121. Epub 2008 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验