From the Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263 and.
J Biol Chem. 2014 Mar 14;289(11):7747-62. doi: 10.1074/jbc.M113.519686. Epub 2014 Jan 10.
Dendritic cells (DC) play a critical role in modulating antigen-specific immune responses elicited by T cells via engagement of the prototypic T cell costimulatory receptor CD28 by the cognate ligands CD80/CD86, expressed on DC. Although CD28 signaling in T cell activation has been well characterized, it has only recently been shown that CD80/CD86, which have no demonstrated binding domains for signaling proteins in their cytoplasmic tails, nonetheless also transduce signals to the DC. Functionally, CD80/CD86 engagement results in DC production of the pro-inflammatory cytokine IL-6, which is necessary for full T cell activation. However, ligation of CD80/CD86 by CTLA4 also induces DC production of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO), which depletes local pools of the essential amino acid tryptophan, resulting in blockade of T cell activation. Despite the significant role of CD80/CD86 in immunological processes and the seemingly opposing roles they play by producing IL-6 and IDO upon their activation, how CD80/CD86 signal remains poorly understood. We have now found that cross-linking CD80/CD86 in human DC activates the PI3K/AKT pathway. This results in phosphorylation/inactivation of its downstream target, FOXO3A, and alleviates FOXO3A-mediated suppression of IL-6 expression. A second event downstream of AKT phosphorylation is activation of the canonical NF-κB pathway, which induces IL-6 expression. In addition to these downstream pathways, we unexpectedly found that CD80/CD86-induced PI3K signaling is regulated by previously unrecognized cross-talk with NOTCH1 signaling. This cross-talk is facilitated by NOTCH-mediated up-regulation of the expression of prolyl isomerase PIN1, which in turn increases enzyme activity of casein kinase II. Subsequently, phosphatase and tensin homolog (which suppresses PI3K activity) is inactivated via phosphorylation by casein kinase II. This results in full activation of PI3K signaling upon cross-linking CD80/CD86. Similar to IL-6, we have found that CD80/CD86-induced IDO production by DC at late time points is also dependent upon the PI3K → AKT → NF-κB pathway and requires cross-talk with NOTCH signaling. These data further suggest that the same signaling pathways downstream of DC CD80/CD86 cross-linking induce early IL-6 production to enhance T cell activation, followed by later IDO production to self-limit this activation. In addition to characterizing the pathways downstream of CD80/CD86 in IL-6 and IDO production, identification of a novel cross-talk between NOTCH1 and PI3K signaling may provide new insights in other biological processes where PI3K signaling plays a major role.
树突状细胞 (DC) 通过其表面的配体 CD80/CD86 与典型的 T 细胞共刺激受体 CD28 结合,在调节 T 细胞特异性免疫应答方面发挥着关键作用。虽然 CD28 信号在 T 细胞激活中已得到很好的描述,但最近才发现 CD80/CD86 虽然其细胞质尾部没有信号蛋白的结合结构域,但也能向 DC 转导信号。功能上,CD80/CD86 的结合导致 DC 产生前炎症细胞因子 IL-6,这对于完全激活 T 细胞是必需的。然而,CTLA4 对 CD80/CD86 的结合也会诱导 DC 产生免疫抑制酶吲哚胺 2,3-双加氧酶 (IDO),从而消耗必需氨基酸色氨酸的局部池,导致 T 细胞激活受阻。尽管 CD80/CD86 在免疫过程中具有重要作用,并且它们在激活后通过产生 IL-6 和 IDO 似乎发挥着相反的作用,但 CD80/CD86 信号的传递仍然知之甚少。我们现在发现,交联人 DC 表面的 CD80/CD86 可激活 PI3K/AKT 通路。这导致其下游靶标 FOXO3A 的磷酸化/失活,并减轻 FOXO3A 对 IL-6 表达的抑制。AKT 磷酸化的第二个下游事件是经典 NF-κB 途径的激活,从而诱导 IL-6 的表达。除了这些下游途径外,我们还意外地发现,CD80/CD86 诱导的 PI3K 信号受到先前未被识别的与 NOTCH1 信号的交叉对话的调节。这种串扰通过 NOTCH 介导的上调脯氨酰异构酶 PIN1 的表达来促进,PIN1 反过来又增加了酪蛋白激酶 II 的酶活性。随后,通过酪蛋白激酶 II 磷酸化失活磷酸酶和张力蛋白同源物(抑制 PI3K 活性)。这导致交联 CD80/CD86 后 PI3K 信号的完全激活。与 IL-6 类似,我们发现 DC 在晚期产生的 CD80/CD86 诱导的 IDO 也依赖于 PI3K→AKT→NF-κB 途径,并需要与 NOTCH 信号的串扰。这些数据进一步表明,交联 DC 表面的 CD80/CD86 后相同的信号通路诱导早期的 IL-6 产生以增强 T 细胞激活,随后诱导晚期 IDO 产生以自我限制这种激活。除了对 CD80/CD86 在 IL-6 和 IDO 产生中的下游途径进行特征描述外,NOTCH1 和 PI3K 信号之间新的串扰的鉴定可能为 PI3K 信号发挥主要作用的其他生物学过程提供新的见解。