Suppr超能文献

李斯特菌中的一个依赖于 PNPase 的 CRISPR 系统。

A PNPase dependent CRISPR System in Listeria.

机构信息

Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France ; INSERM, U604, Paris, France ; INRA, USC2020, Paris, France.

Unité de Génomique Evolutive des Microbes, Institut Pasteur, Paris, France ; CNRS, UMR3525, Paris, France.

出版信息

PLoS Genet. 2014 Jan;10(1):e1004065. doi: 10.1371/journal.pgen.1004065. Epub 2014 Jan 9.

Abstract

The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids. CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and unexpected function for PNPase in "CRISPRology".

摘要

人类细菌病原体李斯特菌正在成为研究 RNA 介导的致病性细菌调控的模式生物。一类被称为 CRISPRs(成簇的、规律间隔的短回文重复序列)的非编码 RNA 已被描述为赋予细菌抵抗入侵噬菌体和可转移质粒的能力。CRISPR 的功能依赖于 CRISPR 相关(cas)基因的活性,这些基因编码一大类具有核酸酶或解旋酶活性以及 DNA 和 RNA 结合结构域的蛋白质。在这里,我们对 L. monocytogenes 菌株 EGD-e 中表达和加工的 CRISPR 元件(RliB)进行了表征,该菌株完全缺乏 cas 基因。结构探测表明,RliB 具有意想不到的二级结构,其中重复序列和相邻间隔区之间存在碱基对相互作用,而不是由回文重复序列形成的典型发夹结构。此外,与李斯特菌中鉴定的其他 CRISPR-Cas 系统不同,RliB-CRISPR 在李斯特菌基因组中普遍存在于相同的基因组位置,并且从不与 cas 基因相关。我们表明,RliB-CRISPR 是内源性编码多核苷酸磷酸化酶(PNPase)酶的底物。不同李斯特菌 RliB-CRISPR 的间隔区与温和和毒性噬菌体有许多共同序列。此外,我们表明,cas 缺失的 RliB-CRISPR 降低了携带匹配原间隔区的质粒的获取频率,前提是基因组中存在第二个 CRISPR-Cas 系统的转录 cas 基因。重要的是,我们表明 PNPase 是 RliB-CRISPR 介导的 DNA 干扰所必需的。总之,我们的数据揭示了一个尚未描述的 CRISPR 系统,其加工和活性都依赖于 PNPase,突出了 PNPase 在“CRISPRology”中的一个新的、意想不到的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e84/3886909/2ae41e33c033/pgen.1004065.g001.jpg

相似文献

1
A PNPase dependent CRISPR System in Listeria.
PLoS Genet. 2014 Jan;10(1):e1004065. doi: 10.1371/journal.pgen.1004065. Epub 2014 Jan 9.
2
Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
mBio. 2021 Mar 30;12(2):e03338-20. doi: 10.1128/mBio.03338-20.
4
Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
J Bacteriol. 2015 Aug;197(16):2631-41. doi: 10.1128/JB.00261-15. Epub 2015 May 26.
5
Comparative analysis of CRISPR loci in different Listeria monocytogenes lineages.
Biochem Biophys Res Commun. 2014 Nov 21;454(3):399-403. doi: 10.1016/j.bbrc.2014.10.018. Epub 2014 Oct 13.
7
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.
PLoS Genet. 2013 Apr;9(4):e1003454. doi: 10.1371/journal.pgen.1003454. Epub 2013 Apr 18.
8
Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.
Microbiology (Reading). 2015 Sep;161(9):1752-1761. doi: 10.1099/mic.0.000129. Epub 2015 Jul 9.
9
Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor.
Cell Host Microbe. 2020 Jul 8;28(1):23-30.e5. doi: 10.1016/j.chom.2020.04.002. Epub 2020 Apr 22.

引用本文的文献

1
Structural and molecular mechanisms of an Ro60 homolog from a Thermus bacteriophage.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf470.
2
CRISPR-based gene editing technology and its application in microbial engineering.
Eng Microbiol. 2023 Jun 20;3(4):100101. doi: 10.1016/j.engmic.2023.100101. eCollection 2023 Dec.
5
Critical roles for 'housekeeping' nucleases in type III CRISPR-Cas immunity.
Elife. 2022 Dec 8;11:e81897. doi: 10.7554/eLife.81897.
6
The function of small RNA in .
PeerJ. 2022 Jul 21;10:e13738. doi: 10.7717/peerj.13738. eCollection 2022.
7
CRISPR-Cas systems: role in cellular processes beyond adaptive immunity.
Folia Microbiol (Praha). 2022 Dec;67(6):837-850. doi: 10.1007/s12223-022-00993-2. Epub 2022 Jul 19.
8
Review of CRISPR-Cas Systems in Species: Current Knowledge and Perspectives.
Int J Microbiol. 2022 Apr 23;2022:9829770. doi: 10.1155/2022/9829770. eCollection 2022.
9
Non-coding RNA regulates phage sensitivity in Listeria monocytogenes.
PLoS One. 2021 Dec 20;16(12):e0260768. doi: 10.1371/journal.pone.0260768. eCollection 2021.
10
Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections.
J Nanobiotechnology. 2021 Dec 4;19(1):401. doi: 10.1186/s12951-021-01132-8.

本文引用的文献

1
Novel configurations of type I and II CRISPR-Cas systems in Corynebacterium diphtheriae.
Microbiology (Reading). 2013 Oct;159(Pt 10):2118-26. doi: 10.1099/mic.0.070235-0. Epub 2013 Jul 31.
2
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis.
Mol Cell. 2013 May 23;50(4):488-503. doi: 10.1016/j.molcel.2013.05.001.
3
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence.
Nature. 2013 May 9;497(7448):254-7. doi: 10.1038/nature12048. Epub 2013 Apr 14.
4
CRISPR-Cas systems and RNA-guided interference.
Wiley Interdiscip Rev RNA. 2013 May-Jun;4(3):267-78. doi: 10.1002/wrna.1159. Epub 2013 Mar 20.
6
A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus.
Mol Microbiol. 2013 Mar;87(5):1088-99. doi: 10.1111/mmi.12152. Epub 2013 Feb 3.
7
The excludon: a new concept in bacterial antisense RNA-mediated gene regulation.
Nat Rev Microbiol. 2013 Feb;11(2):75-82. doi: 10.1038/nrmicro2934. Epub 2012 Dec 24.
8
The adaptation of temperate bacteriophages to their host genomes.
Mol Biol Evol. 2013 Apr;30(4):737-51. doi: 10.1093/molbev/mss279. Epub 2012 Dec 12.
9
Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli.
PLoS One. 2012;7(11):e50797. doi: 10.1371/journal.pone.0050797. Epub 2012 Nov 26.
10
The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity.
Annu Rev Genet. 2012;46:311-39. doi: 10.1146/annurev-genet-110711-155447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验