Department of Medicine, McGill University, Montreal, Canada ; Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada ; Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, Montreal, Canada.
Department of Medicine, McGill University, Montreal, Canada ; Department of Pediatrics, McGill University, Montreal, Canada.
PLoS One. 2014 Jan 9;9(1):e84601. doi: 10.1371/journal.pone.0084601. eCollection 2014.
Over time, adaptive Gaussian Hermite quadrature (QUAD) has become the preferred method for estimating generalized linear mixed models with binary outcomes. However, penalized quasi-likelihood (PQL) is still used frequently. In this work, we systematically evaluated whether matching results from PQL and QUAD indicate less bias in estimated regression coefficients and variance parameters via simulation.
We performed a simulation study in which we varied the size of the data set, probability of the outcome, variance of the random effect, number of clusters and number of subjects per cluster, etc. We estimated bias in the regression coefficients, odds ratios and variance parameters as estimated via PQL and QUAD. We ascertained if similarity of estimated regression coefficients, odds ratios and variance parameters predicted less bias.
Overall, we found that the absolute percent bias of the odds ratio estimated via PQL or QUAD increased as the PQL- and QUAD-estimated odds ratios became more discrepant, though results varied markedly depending on the characteristics of the dataset.
Given how markedly results varied depending on data set characteristics, specifying a rule above which indicated biased results proved impossible. This work suggests that comparing results from generalized linear mixed models estimated via PQL and QUAD is a worthwhile exercise for regression coefficients and variance components obtained via QUAD, in situations where PQL is known to give reasonable results.
随着时间的推移,自适应高斯 Hermite 求积(QUAD)已成为估计二项式结局广义线性混合模型的首选方法。然而,惩罚拟似然(PQL)仍然经常使用。在这项工作中,我们通过模拟系统地评估了 PQL 和 QUAD 的匹配结果是否表明估计的回归系数和方差参数的偏差较小。
我们进行了一项模拟研究,其中我们改变了数据集的大小、结局的概率、随机效应的方差、聚类的数量以及每个聚类的受试者数量等。我们通过 PQL 和 QUAD 估计了回归系数、优势比和方差参数的偏差。我们确定了通过 PQL 和 QUAD 估计的回归系数、优势比和方差参数的相似性是否可以预测较小的偏差。
总体而言,我们发现通过 PQL 或 QUAD 估计的优势比的绝对百分比偏差随着 PQL 和 QUAD 估计的优势比变得更加不一致而增加,尽管结果因数据集的特征而有显著差异。
鉴于结果因数据集特征而异,指定一个表示有偏差的结果的规则是不可能的。这项工作表明,在 PQL 已知给出合理结果的情况下,对于通过 QUAD 获得的回归系数和方差分量,比较通过 PQL 和 QUAD 估计的广义线性混合模型的结果是一项有价值的练习。