Suppr超能文献

拟合有序结局的多层模型:替代规格和估计方法的性能。

Fitting multilevel models with ordinal outcomes: performance of alternative specifications and methods of estimation.

机构信息

Department of Psychology, University of North Carolina at Chapel Hill 27599-3270, USA.

出版信息

Psychol Methods. 2011 Dec;16(4):373-90. doi: 10.1037/a0025813. Epub 2011 Oct 31.

Abstract

Previous research has compared methods of estimation for fitting multilevel models to binary data, but there are reasons to believe that the results will not always generalize to the ordinal case. This article thus evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data is justified and (b) which estimator to employ when instead fitting multilevel cumulative logit models to ordinal data, maximum likelihood (ML), or penalized quasi-likelihood (PQL). ML and PQL are compared across variations in sample size, magnitude of variance components, number of outcome categories, and distribution shape. Fitting a multilevel linear model to ordinal outcomes is shown to be inferior in virtually all circumstances. PQL performance improves markedly with the number of ordinal categories, regardless of distribution shape. In contrast to binary data, PQL often performs as well as ML when used with ordinal data. Further, the performance of PQL is typically superior to ML when the data include a small to moderate number of clusters (i.e., ≤ 50 clusters).

摘要

先前的研究比较了用于拟合二项数据的多层模型估计方法,但有理由认为,这些结果并不总是适用于有序情况。因此,本文评估了(a)将多层线性模型拟合有序结果数据是否合理,以及(b)在将多层累积对数模型拟合有序数据时应采用哪种估计器,最大似然(ML)或惩罚拟似然(PQL)。比较了 ML 和 PQL 在样本量、方差分量大小、结果类别数量和分布形状的变化下的表现。几乎在所有情况下,将多层线性模型拟合有序结果都表现不佳。无论分布形状如何,PQL 的性能都会随着有序类别数量的增加而显著提高。与二项数据不同,当使用有序数据时,PQL 通常与 ML 一样好用。此外,当数据包括少量到中等数量的聚类(即≤50 个聚类)时,PQL 的性能通常优于 ML。

相似文献

3
Sample size issues in multilevel logistic regression models.多水平逻辑回归模型中的样本量问题。
PLoS One. 2019 Nov 22;14(11):e0225427. doi: 10.1371/journal.pone.0225427. eCollection 2019.
5
Multilevel Factor Score Regression.多层次因子得分回归。
Multivariate Behav Res. 2020 Jul-Aug;55(4):600-624. doi: 10.1080/00273171.2019.1661817. Epub 2019 Sep 11.
6
Estimation Methods for Mixed Logistic Models with Few Clusters.具有少量聚类的混合逻辑模型的估计方法
Multivariate Behav Res. 2016 Nov-Dec;51(6):790-804. doi: 10.1080/00273171.2016.1236237. Epub 2016 Nov 1.
7
Poisson Multilevel Models with Small Samples.泊松多层模型与小样本。
Multivariate Behav Res. 2019 May-Jun;54(3):444-455. doi: 10.1080/00273171.2018.1545630. Epub 2019 Jan 20.

引用本文的文献

10
A Citizen Science Trial to Assess Perception of Wild Penguin Welfare.一项评估野生企鹅福利认知的公民科学试验。
Front Vet Sci. 2021 Jul 27;8:698685. doi: 10.3389/fvets.2021.698685. eCollection 2021.

本文引用的文献

2
Have Multilevel Models Been Structural Equation Models All Along?多层模型一直以来都是结构方程模型吗?
Multivariate Behav Res. 2003 Oct 1;38(4):529-69. doi: 10.1207/s15327906mbr3804_5.
8
Collapsing ordered outcome categories: a note of concern.对有序结果类别进行合并:一份关注说明。
Am J Epidemiol. 1996 Aug 15;144(4):421-4. doi: 10.1093/oxfordjournals.aje.a008944.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验