Hedeker D, Gibbons R D, Flay B R
School of Public Health and Prevention Research Center, University of Illinois at Chicago 60612-7260.
J Consult Clin Psychol. 1994 Aug;62(4):757-65. doi: 10.1037//0022-006x.62.4.757.
A random-effects regression model is proposed for analysis of clustered data. Unlike ordinary regression analysis of clustered data, random-effects regression models do not assume that each observation is independent but do assume that data within clusters are dependent to some degree. The degree of this dependency is estimated along with estimates of the usual model parameters, thus adjusting these effects for the dependency resulting from the clustering of the data. A maximum marginal likelihood solution is described, and available statistical software for the model is discussed. An analysis of a dataset in which students are clustered within classrooms and schools is used to illustrate features of random-effects regression analysis, relative to both individual-level analysis that ignores the clustering of the data, and classroom-level analysis that aggregates the individual data.
提出了一种随机效应回归模型用于聚类数据的分析。与聚类数据的普通回归分析不同,随机效应回归模型并不假定每个观测值是独立的,而是假定聚类内的数据在某种程度上是相关的。这种相关性的程度与通常模型参数的估计一起进行估计,从而针对数据聚类所导致的相关性调整这些效应。描述了一种最大边际似然解,并讨论了适用于该模型的现有统计软件。通过对一个数据集的分析来说明随机效应回归分析的特征,该数据集中学生按教室和学校进行聚类,这相对于忽略数据聚类的个体水平分析以及汇总个体数据的教室水平分析而言。