Suppr超能文献

基于集成的混合概率采样用于肺结节计算机辅助检测中的不平衡数据学习

Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD.

作者信息

Cao Peng, Yang Jinzhu, Li Wei, Zhao Dazhe, Zaiane Osmar

机构信息

College of Information Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China; Computing Science, University of Alberta, Edmonton, Alberta, Canada.

College of Information Science and Engineering, Northeastern University, Shenyang, China.

出版信息

Comput Med Imaging Graph. 2014 Apr;38(3):137-50. doi: 10.1016/j.compmedimag.2013.12.003. Epub 2013 Dec 21.

Abstract

Classification plays a critical role in false positive reduction (FPR) in lung nodule computer aided detection (CAD). The difficulty of FPR lies in the variation of the appearances of the nodules, and the imbalance distribution between the nodule and non-nodule class. Moreover, the presence of inherent complex structures in data distribution, such as within-class imbalance and high-dimensionality are other critical factors of decreasing classification performance. To solve these challenges, we proposed a hybrid probabilistic sampling combined with diverse random subspace ensemble. Experimental results demonstrate the effectiveness of the proposed method in terms of geometric mean (G-mean) and area under the ROC curve (AUC) compared with commonly used methods.

摘要

分类在肺结节计算机辅助检测(CAD)中的假阳性率降低(FPR)方面起着关键作用。FPR的难点在于结节外观的变化,以及结节类与非结节类之间的不平衡分布。此外,数据分布中存在内在的复杂结构,如类内不平衡和高维性,是降低分类性能的其他关键因素。为了解决这些挑战,我们提出了一种结合多样随机子空间集成的混合概率采样方法。实验结果表明,与常用方法相比,该方法在几何均值(G均值)和ROC曲线下面积(AUC)方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验