Suppr超能文献

基于稀疏域水平集和提升算法的统一方法,用于减少肺结节检测中的假阳性。

A unified methodology based on sparse field level sets and boosting algorithms for false positives reduction in lung nodules detection.

机构信息

Department of Computer Engineering, Bu-Ali Sina University, Hamedan, Iran.

Department of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran.

出版信息

Int J Comput Assist Radiol Surg. 2018 Mar;13(3):397-409. doi: 10.1007/s11548-017-1656-8. Epub 2017 Aug 9.

Abstract

PURPOSE

This work aims to develop a unified methodology for the false positives reduction in lung nodules computer-aided detection schemes.

METHODS

The 3D region of each detected nodule candidate is first reconstructed using the sparse field method for accurately segmenting the objects. This technique enhances the level set modeling by restricting the computations to a narrow band near the evolving curve. Then, a set of 2D and 3D relevant features are extracted for each segmented candidate. Subsequently, a hybrid undersampling/boosting algorithm called RUSBoost is applied to analyze the features and discriminate real nodules from non-nodules.

RESULTS

The performance of the proposed scheme was evaluated by using 70 CT images, randomly selected from the Lung Image Database Consortium and containing 198 nodules. Applying RUSBoost classifier exhibited a better performance than some commonly used classifiers. It effectively reduced the average number of FPs to only 3.9 per scan based on a fivefold cross-validation.

CONCLUSION

The practical implementation, applicability for different nodule types and adaptability in handling the imbalanced data classification insure the improvement in lung nodules detection by utilizing this new approach.

摘要

目的

本研究旨在为肺部结节计算机辅助检测方案中的假阳性减少开发一种统一的方法。

方法

首先使用稀疏场方法重建每个检测到的结节候选者的 3D 区域,以准确地分割对象。该技术通过将计算限制在演化曲线附近的一个窄带内,增强了水平集建模。然后,为每个分割的候选者提取一组 2D 和 3D 相关特征。随后,应用一种称为 RUSBoost 的混合欠采样/提升算法来分析特征,并区分真实结节和非结节。

结果

使用从 Lung Image Database Consortium 随机选择的包含 198 个结节的 70 个 CT 图像评估了所提出方案的性能。应用 RUSBoost 分类器的性能优于一些常用的分类器。基于五倍交叉验证,它有效地将平均假阳性数量减少到每个扫描仅 3.9 个。

结论

利用这种新方法,通过实际实现、对不同结节类型的适用性以及在处理不平衡数据分类方面的适应性,确保了肺部结节检测的改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验