Department of Computer Engineering, Bu-Ali Sina University, Hamedan, Iran.
Department of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran.
Int J Comput Assist Radiol Surg. 2018 Mar;13(3):397-409. doi: 10.1007/s11548-017-1656-8. Epub 2017 Aug 9.
This work aims to develop a unified methodology for the false positives reduction in lung nodules computer-aided detection schemes.
The 3D region of each detected nodule candidate is first reconstructed using the sparse field method for accurately segmenting the objects. This technique enhances the level set modeling by restricting the computations to a narrow band near the evolving curve. Then, a set of 2D and 3D relevant features are extracted for each segmented candidate. Subsequently, a hybrid undersampling/boosting algorithm called RUSBoost is applied to analyze the features and discriminate real nodules from non-nodules.
The performance of the proposed scheme was evaluated by using 70 CT images, randomly selected from the Lung Image Database Consortium and containing 198 nodules. Applying RUSBoost classifier exhibited a better performance than some commonly used classifiers. It effectively reduced the average number of FPs to only 3.9 per scan based on a fivefold cross-validation.
The practical implementation, applicability for different nodule types and adaptability in handling the imbalanced data classification insure the improvement in lung nodules detection by utilizing this new approach.
本研究旨在为肺部结节计算机辅助检测方案中的假阳性减少开发一种统一的方法。
首先使用稀疏场方法重建每个检测到的结节候选者的 3D 区域,以准确地分割对象。该技术通过将计算限制在演化曲线附近的一个窄带内,增强了水平集建模。然后,为每个分割的候选者提取一组 2D 和 3D 相关特征。随后,应用一种称为 RUSBoost 的混合欠采样/提升算法来分析特征,并区分真实结节和非结节。
使用从 Lung Image Database Consortium 随机选择的包含 198 个结节的 70 个 CT 图像评估了所提出方案的性能。应用 RUSBoost 分类器的性能优于一些常用的分类器。基于五倍交叉验证,它有效地将平均假阳性数量减少到每个扫描仅 3.9 个。
利用这种新方法,通过实际实现、对不同结节类型的适用性以及在处理不平衡数据分类方面的适应性,确保了肺部结节检测的改进。