Associate Post-Graduate Program in Physical Education UEM/UEL, State University of Maringá , Brazil.
J Sports Sci Med. 2013 Dec 1;12(4):655-9. eCollection 2013.
This study aimed to generate equations for the indirect determination of lactate minimum (LM) intensity from short-distance maximal performances in 10- to 17-year-old swimmers. Seventy-one male (n = 41) and female (n = 30) competitive swimmers were divided into subgroups: one to generate predictive equations for LM (70% of the sample), and the second to cross-validate the proposed equations (30% of the sample). All participants swam maximally short-distance using front crawl stroke, and mean speed of the 100 (S100), 200 (S200), and 400 m (S400) performances were calculated in m·s(-1). The LM protocol was measured after an 8 min of passive recovery from the S200, consisting of five progressive 200 m performances (~80%, 84%, 88%, 92%, and 96% of S200). Multiple linear regressions generated predictive equations for LM from single performances (S100, S200, and S400), also considering as independent variables age, pubic hair index, body mass, height, and body fat. The relationships between variables were examined using standard error of estimate (SEE). Nevertheless, age, biological maturation and anthropometric variables did not contribute to explain LM. Further, for both genders, S200 was the best predictor for LM, contributing to 95% of LM variation in males and 81% in females. The generated equations were: "LM = 0.24 + 0.67 × S200" (adjusted R(2) = 0.95; SEE = 0.03 m·s(-1)) for boys and "LM = 0.13 + 0.79 × S200" (adjusted R(2) = 0.81; SEE = 0.03 m·s(-1)) for girls. The predicted LM did not differ from the measured LM during cross-validation analysis. A single performance was found to be a valid LM predictor in 10- to 17-year-old swimmers regardless of gender, age and biological maturation. Thus, this is a practical, non-invasive, and economical alternative to estimate the aerobic capacity in young swimmers. Key PointsLM can be estimated from a single maximal swimming performance for boys and girls, regardless age, sexual maturity, anthropometrical and body composition parameters.For boys, S200 was the best LM predictor (LM = 0.24 + 0.67 x S200), explaining 95% of LM variation with great cross validation parameters.For girls, S200 was also the best LM predictor (LM = 0.13 + 0.79 x S200), explaining 81% of LM variation with great cross validation parameters.
这项研究旨在为 10-17 岁游泳运动员的短距离最大性能生成间接确定乳酸最小(LM)强度的方程。71 名男性(n=41)和女性(n=30)竞技游泳运动员分为亚组:一组用于生成 LM 的预测方程(约样本的 70%),第二组用于交叉验证提出的方程(约样本的 30%)。所有参与者均以自由泳泳姿进行短距离最大运动,100m(S100)、200m(S200)和 400m(S400)的平均速度以 m·s(-1)计算。LM 方案在 200m 运动后通过 8 分钟的被动恢复后进行测量,该方案由五次渐进式 200m 运动组成(80%、84%、88%、92%和 96%的 S200)。多元线性回归生成了从单次运动(S100、S200 和 S400)预测 LM 的预测方程,还考虑了年龄、阴毛指数、体重、身高和体脂等独立变量。使用估计标准误差(SEE)检查变量之间的关系。然而,年龄、生物成熟度和人体测量学变量对解释 LM 没有贡献。此外,对于两种性别,S200 是 LM 的最佳预测因子,男性占 LM 变化的 95%,女性占 81%。生成的方程为:“LM=0.24+0.67×S200”(调整后的 R²=0.95;SEE=0.03 m·s(-1)),男孩;“LM=0.13+0.79×S200”(调整后的 R²=0.81;SEE=0.03 m·s(-1)),女孩。交叉验证分析期间,预测的 LM 与测量的 LM 没有差异。研究发现,10-17 岁游泳运动员无论性别、年龄和生物成熟度如何,单次运动均可作为有效的 LM 预测因子。因此,这是一种实用、非侵入性且经济的替代方法,可用于估计年轻游泳运动员的有氧能力。关键点无论年龄、性成熟度、人体测量学和身体成分参数如何,男孩和女孩的 LM 均可通过单次最大游泳表现进行估计。对于男孩来说,S200 是 LM 的最佳预测因子(LM=0.24+0.67×S200),具有出色的交叉验证参数,解释了 95%的 LM 变化。对于女孩来说,S200 也是 LM 的最佳预测因子(LM=0.13+0.79×S200),具有出色的交叉验证参数,解释了 81%的 LM 变化。