Department of Electrical and Computer Engineering, The University of British Columbia, 2322 Main Mall, Vancouver, BC V6T1Z4, Canada.
Sensors (Basel). 2014 Jan 15;14(1):1474-96. doi: 10.3390/s140101474.
The use of wireless body sensor networks is gaining popularity in monitoring and communicating information about a person's health. In such applications, the amount of data transmitted by the sensor node should be minimized. This is because the energy available in these battery powered sensors is limited. In this paper, we study the wireless transmission of electroencephalogram (EEG) signals. We propose the use of a compressed sensing (CS) framework to efficiently compress these signals at the sensor node. Our framework exploits both the temporal correlation within EEG signals and the spatial correlations amongst the EEG channels. We show that our framework is up to eight times more energy efficient than the typical wavelet compression method in terms of compression and encoding computations and wireless transmission. We also show that for a fixed compression ratio, our method achieves a better reconstruction quality than the CS-based state-of-the art method. We finally demonstrate that our method is robust to measurement noise and to packet loss and that it is applicable to a wide range of EEG signal types.
无线体域网在监测和传输人体健康信息方面的应用越来越广泛。在这类应用中,传感器节点传输的数据量应尽量减少。这是因为这些电池供电的传感器的可用能量是有限的。在本文中,我们研究了脑电(EEG)信号的无线传输。我们提出在传感器节点使用压缩感知(CS)框架来对这些信号进行高效压缩。我们的框架利用了 EEG 信号中的时间相关性和 EEG 通道之间的空间相关性。我们表明,在压缩和编码计算以及无线传输方面,我们的框架比典型的小波压缩方法的能量效率高 8 倍。我们还表明,对于固定的压缩比,我们的方法在重建质量上优于基于 CS 的最新方法。我们最后证明,我们的方法对测量噪声和数据包丢失具有鲁棒性,并且适用于广泛的 EEG 信号类型。