Suppr超能文献

一种基于网络的核机器测试,用于在全基因组关联研究中识别风险通路。

A network-based kernel machine test for the identification of risk pathways in genome-wide association studies.

作者信息

Freytag Saskia, Manitz Juliane, Schlather Martin, Kneib Thomas, Amos Christopher I, Risch Angela, Chang-Claude Jenny, Heinrich Joachim, Bickeböller Heike

机构信息

Institute of Genetic Epidemiology, Medical School, Göttingen, Germany.

出版信息

Hum Hered. 2013;76(2):64-75. doi: 10.1159/000357567. Epub 2014 Jan 14.

Abstract

Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). In this study, the kernel converts the genomic information of 2 individuals into a quantitative value reflecting their genetic similarity. With the selection of the kernel, one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for the topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case-control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms.

摘要

生物途径为复杂疾病的遗传病因提供了丰富的信息和生物学背景。逻辑核机器测试整合了途径方面的先验知识,以便分析来自全基因组关联研究(GWAS)的数据。在本研究中,核将两个个体的基因组信息转换为反映其遗传相似性的定量值。通过选择核,人们隐含地选择了一种遗传效应模型。与许多其他途径方法一样,现有的核均未考虑途径的拓扑结构或基因 - 基因相互作用类型。然而,有证据表明,在GWAS背景下,基因的连通性和邻域至关重要,因为与疾病相关的基因通常会相互作用。因此,我们提出了一种纳入途径拓扑结构和相互作用信息的新型核。通过模拟研究,我们证明所提出的方法能够正确维持I型错误,并且在识别与疾病相关的途径方面比基于非网络的方法更有效。我们将我们的方法应用于肺癌和类风湿性关节炎的全基因组关联病例对照数据。我们识别出一些与这些疾病相关的有前景的新途径,这可能会改善我们目前对遗传机制的理解。

相似文献

引用本文的文献

6
Genome-wide pathway-based quantitative multiple phenotypes analysis.基于全基因组途径的定量多表型分析。
PLoS One. 2020 Nov 11;15(11):e0240910. doi: 10.1371/journal.pone.0240910. eCollection 2020.
8
KERNEL-PENALIZED REGRESSION FOR ANALYSIS OF MICROBIOME DATA.用于微生物组数据分析的核惩罚回归
Ann Appl Stat. 2018 Mar;12(1):540-566. doi: 10.1214/17-AOAS1102. Epub 2018 Mar 9.

本文引用的文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验