文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用动力磁共振成像评估颈椎黄韧带的动态变化。

Dynamic changes of the ligamentum flavum in the cervical spine assessed with kinetic magnetic resonance imaging.

机构信息

Department of Orthopaedic Surgery, University of California at Los Angeles (UCLA), Los Angeles, California.

出版信息

Global Spine J. 2013 Jun;3(2):69-74. doi: 10.1055/s-0033-1337121. Epub 2013 Mar 19.


DOI:10.1055/s-0033-1337121
PMID:24436854
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3854599/
Abstract

The purpose of this article is to quantify changes in thickness of the ligamentum flavum (LF) associated with motion of the cervical spine and to compare the thickness of the LF at each cervical level using kinetic magnetic resonance imaging (kMRI). Two hundred fifty-seven symptomatic patients (129 men; 128 women) underwent kMRI in neutral, flexion, and extension positions. Midsagittal images were digitally marked and electronically analyzed by spine surgeons. Thickness of LF in the cervical region from C2-3 to C7-T1 was measured in all three positions. LF at C7-T1 was significantly thicker than C2-3 to C6-7 in neutral, flexion, and extension positions (p < 0.05). LF was significantly thicker in extension than in flexion at C3-4 to C6-7. LF thickness increases with extension and decreases with flexion. LF is uniquely thick at C6-7 and at C7-T1 in the extension position, which may predispose these levels to cord compression syndromes and associated neuropathies.

摘要

本文旨在量化颈椎运动时黄韧带(LF)厚度的变化,并使用动态磁共振成像(kMRI)比较每个颈椎水平的 LF 厚度。257 例有症状的患者(男性 129 例,女性 128 例)在中立位、前屈位和后伸位接受了 kMRI 检查。脊柱外科医生对正中矢状面图像进行了数字标记和电子分析。在所有三个位置测量了 C2-3 至 C7-T1 颈椎区域 LF 的厚度。在中立位、前屈位和后伸位,LF 在 C7-T1 处明显比 C2-3 至 C6-7 处厚(p<0.05)。在 C3-4 至 C6-7 处,LF 在伸展位比在屈曲位更厚。LF 随伸展而增加,随屈曲而减少。LF 在 C6-7 和伸展位的 C7-T1 处特别厚,这可能使这些水平容易发生脊髓压迫综合征和相关的神经病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/523d9d138492/10-1055-s-0033-1337121-i1200038-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/c24deef5406d/10-1055-s-0033-1337121-i1200038-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/02f10142b695/10-1055-s-0033-1337121-i1200038-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/9dded07c115d/10-1055-s-0033-1337121-i1200038-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/523d9d138492/10-1055-s-0033-1337121-i1200038-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/c24deef5406d/10-1055-s-0033-1337121-i1200038-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/02f10142b695/10-1055-s-0033-1337121-i1200038-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/9dded07c115d/10-1055-s-0033-1337121-i1200038-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/144b/3854599/523d9d138492/10-1055-s-0033-1337121-i1200038-4.jpg

相似文献

[1]
Dynamic changes of the ligamentum flavum in the cervical spine assessed with kinetic magnetic resonance imaging.

Global Spine J. 2013-3-19

[2]
The Occupancy of the Components in the Cervical Spine and Their Changes with Extension and Flexion.

Global Spine J. 2015-5-15

[3]
The Evaluation and Observation of "Hidden" Hypertrophy of Cervical Ligamentum Flavum, Cervical Canal, and Related Factors Using Kinetic Magnetic Resonance Imaging.

Global Spine J. 2015-7-9

[4]
Kinematic relationship between missed ligamentum flavum bulge and degenerative factors in the cervical spine.

Spine J. 2015-10-1

[5]
Dynamic Evaluation of the Cervical Spine and the Spinal Cord of Symptomatic Patients Using a Kinetic Magnetic Resonance Imaging Technique.

Clin Spine Surg. 2017-10

[6]
Anatomical analysis of human ligamentum flavum in the cervical spine: Special consideration to the attachments, coverage, and lateral extent.

J Orthop Sci. 2017-11

[7]
Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension.

Spine J. 2016-4

[8]
Kinetic change of spinal cord compression on flexion-extension magnetic resonance imaging in cervical spine.

Clin Neurol Neurosurg. 2018-11

[9]
Evaluation of spinal cord compression and hyperintense intramedullary lesions on T2-weighted sequences in patients with cervical spondylotic myelopathy using flexion-extension MRI protocol.

Spine J. 2015-4-1

[10]
Kinematic characteristics of patients with cervical imbalance: a weight-bearing dynamic MRI study.

Eur Spine J. 2019-1-8

引用本文的文献

[1]
Comprehensive review of the cervical ligamenta flava.

Surg Radiol Anat. 2025-4-1

[2]
Stress Distribution on Spinal Cord According to Type of Laminectomy for Large Focal Cervical Ossification of Posterior Longitudinal Ligament Based on Finite Element Method.

Bioengineering (Basel). 2022-10-2

[3]
The cervical sagittal curvature change in patients with or without PCSM after laminoplasty.

Front Surg. 2022-8-8

[4]
Ligamentum Flavum Buckling vs Hypertrophy in Cervical Myelopathy Using Dynamic Imaging: Are Instability and Loss of Disc Height the Culprits?

Int J Spine Surg. 2022-4

[5]
Biportal endoscopic unilateral laminotomy with bilateral decompression for the treatment of cervical spondylotic myelopathy.

Acta Neurochir (Wien). 2021-9

[6]
A Dynamic Magnetic Resonance Imaging Study of Changes in Severity of Cervical Spinal Stenosis in Flexion and Extension.

Ann Rehabil Med. 2018-8

[7]
Thickening Ligamentum Flavum Mimicking Tumor in the Epidural Space of the Cervical Spine.

Korean J Neurotrauma. 2018-4

[8]
Diagnosis and treatment of hidden lesions in "mild" cervical spondylotic myelopathy patients with apparent symptoms.

Medicine (Baltimore). 2017-7

[9]
Static and dynamic cervical MRI: two useful exams in cervical myelopathy.

J Spine Surg. 2017-6

[10]
The Occupancy of the Components in the Cervical Spine and Their Changes with Extension and Flexion.

Global Spine J. 2015-5-15

本文引用的文献

[1]
Cervical spinal canal narrowing and cervical neurological injuries.

Chin J Traumatol. 2012

[2]
Dynamic magnetic resonance imaging of the cervical spine with high-resolution 3-dimensional T2-imaging.

Clin Neuroradiol. 2011-12-23

[3]
Ossification of the ligamentum flavum in the cervical spine.

JBR-BTR. 2011

[4]
Factors associated with the thickness of the ligamentum flavum: is ligamentum flavum thickening due to hypertrophy or buckling?

Spine (Phila Pa 1976). 2011-7-15

[5]
Hypertrophy of the lumbar ligamentum flavum is associated with inflammation-related TGF-β expression.

Acta Neurochir (Wien). 2010-10-20

[6]
The "thickened" ligamentum flavum: is it buckling or enlargement?

AJNR Am J Neuroradiol. 2010-9-30

[7]
Comparison of magnetic resonance imaging and computed tomogram-myelography for evaluation of cross sections of cervical spinal morphology.

Spine (Phila Pa 1976). 2011-1-1

[8]
Comparative anatomical dimensions of the complete human and porcine spine.

Eur Spine J. 2010-2-26

[9]
The thickness of the ligamentum flavum in relation to age and gender.

Clin Anat. 2010-1

[10]
Cervical segmental motion at levels adjacent to disc herniation as determined with kinetic magnetic resonance imaging.

Spine (Phila Pa 1976). 2009-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索