Suppr超能文献

利用铁磁材料和磁场增强光电化学水氧化

Enhancing Photoelectrochemical Water Oxidation Using Ferromagnetic Materials and Magnetic Fields.

作者信息

Wang Qingjie, Oldham Louise I, Giner-Requena Alfredo, Wang Zeyuan, Benetti Daniele, Montilla-Verdú Salvador, Chen Rong, Du Dongfeng, Lana-Villarreal Teresa, Aschauer Ulrich, Guijarro Néstor, Durrant James Robert, Luo Jingshan

机构信息

Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.

Institute of Electrochemistry, Universidad de Alicante, Apartat 99, E-03080 Alacant, Spain.

出版信息

J Am Chem Soc. 2024 Dec 18;146(50):34681-34689. doi: 10.1021/jacs.4c13017. Epub 2024 Dec 4.

Abstract

Photoelectrochemical (PEC) water splitting provides a promising strategy for H production. However, its performance is limited by severe carrier recombination and sluggish water oxidation kinetics. While numerous strategies, namely, elemental doping, morphology engineering, heterojunction formation, and catalyst modification, have been extensively explored to enhance the PEC performance, the application of external magnetic fields (MFs) to affect the catalysis or charge carrier dynamics remains yet to be exploited. Herein, BiVO is first selected as a representative photoanode, demonstrating that an ultrathin ferromagnetic coating based on FeTiO, when combined with an external MF, boosts its solar water oxidation performance. The combined analyses of the charge transfer and separation efficiency together with ultraviolet photoelectron spectroscopy and transient absorption spectroscopy data revealed that the MF positively affects the band alignment across the BiVO/FeTiO interface, improving the charge separation, while the oxygen evolution at the FeTiO/electrolyte interface was promoted. Finally, we expand this concept to other metal oxide photoanodes, such as TiO, WO, and FeO, demonstrating the universality of such an approach. Overall, this work pioneers a novel route to harvest external MFs and improve the PEC response of common nonmagnetic semiconductor photoelectrodes in photoelectrocatalytic conversion.

摘要

光电化学(PEC)水分解为制氢提供了一种很有前景的策略。然而,其性能受到严重的载流子复合和缓慢的水氧化动力学的限制。尽管已经广泛探索了多种策略,即元素掺杂、形貌工程、异质结形成和催化剂改性,以提高PEC性能,但利用外部磁场(MFs)来影响催化或电荷载流子动力学的应用仍有待开发。在此,首先选择BiVO作为代表性光阳极,证明基于FeTiO的超薄铁磁涂层与外部MF结合时,可提高其太阳能水氧化性能。通过对电荷转移和分离效率的综合分析以及紫外光电子能谱和瞬态吸收光谱数据表明,MF对BiVO/FeTiO界面的能带排列有积极影响,改善了电荷分离,同时促进了FeTiO/电解质界面处的析氧反应。最后,我们将这一概念扩展到其他金属氧化物光阳极,如TiO、WO和FeO,证明了这种方法的通用性。总的来说,这项工作开创了一条利用外部MFs并改善普通非磁性半导体光电极在光电催化转化中PEC响应的新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/343a/12312158/1b842ffd752a/ja4c13017_0001.jpg

相似文献

1
Enhancing Photoelectrochemical Water Oxidation Using Ferromagnetic Materials and Magnetic Fields.
J Am Chem Soc. 2024 Dec 18;146(50):34681-34689. doi: 10.1021/jacs.4c13017. Epub 2024 Dec 4.
2
Ternary Oxide CuWO/BiVO/FeCoO Films for Photoelectrochemical Water Oxidation: Insights into the Electronic Structure and Interfacial Band Alignment.
ACS Appl Mater Interfaces. 2022 May 25;14(20):22858-22869. doi: 10.1021/acsami.1c21001. Epub 2022 Jan 12.
4
WO/NbCT MXene 2D-2D heterojunction as a high performance photoanode for photoelectrochemical water splitting.
Nanoscale Adv. 2025 Jun 10;7(14):4450-4460. doi: 10.1039/d5na00345h. eCollection 2025 Jul 10.
5
Photothermal CuS as a Hole Transfer Layer on BiVO Photoanode for Efficient Solar Water Oxidation.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202507259. doi: 10.1002/anie.202507259. Epub 2025 Jun 23.
6
Improved Photoelectrochemical Performance of WO/BiVO Heterojunction Photoanodes via WO Nanostructuring.
ACS Appl Mater Interfaces. 2023 Nov 3;15(45):52436-47. doi: 10.1021/acsami.3c10869.
7
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
9
Synergistic Role of Facet-Engineered Surface and Ferroelectric Polarization in Photoelectrochemical Water Reduction over Pure BiFeO Thin Film.
ACS Appl Mater Interfaces. 2025 Aug 13;17(32):46339-46352. doi: 10.1021/acsami.5c09048. Epub 2025 Aug 1.

引用本文的文献

1
Unlocking the Potential of Photoelectrochemical Water Splitting via Heterointerface Charge Polarization.
Adv Sci (Weinh). 2025 Jul;12(26):e2502384. doi: 10.1002/advs.202502384. Epub 2025 Apr 17.
2
A perspective on field-effect in energy and environmental catalysis.
Chem Sci. 2024 Dec 18;16(4):1506-1527. doi: 10.1039/d4sc07740g. eCollection 2025 Jan 22.

本文引用的文献

1
The origin of magnetization-caused increment in water oxidation.
Nat Commun. 2023 Apr 29;14(1):2482. doi: 10.1038/s41467-023-38212-2.
2
Durable Electrocatalytic Reduction of Nitrate to Ammonia over Defective Pseudobrookite Fe TiO Nanofibers with Abundant Oxygen Vacancies.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202215782. doi: 10.1002/anie.202215782. Epub 2022 Dec 22.
3
Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping.
Nat Commun. 2022 Oct 20;13(1):6231. doi: 10.1038/s41467-022-33905-6.
4
Spin-Polarized Photocatalytic CO Reduction of Mn-Doped Perovskite Nanoplates.
J Am Chem Soc. 2022 Aug 31;144(34):15718-15726. doi: 10.1021/jacs.2c06060. Epub 2022 Aug 17.
5
Elucidating the Role of Hypophosphite Treatment in Enhancing the Performance of BiVO Photoanode for Photoelectrochemical Water Oxidation.
ACS Appl Mater Interfaces. 2022 Jun 15;14(23):26642-26652. doi: 10.1021/acsami.2c02790. Epub 2022 May 31.
8
Engineering MoO /MXene Hole Transfer Layers for Unexpected Boosting of Photoelectrochemical Water Oxidation.
Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202200946. doi: 10.1002/anie.202200946. Epub 2022 Feb 21.
9
Engineering Single-Atomic Ni-N-O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting.
J Am Chem Soc. 2021 Dec 15;143(49):20657-20669. doi: 10.1021/jacs.1c07391. Epub 2021 Nov 16.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验