Wang Qingjie, Oldham Louise I, Giner-Requena Alfredo, Wang Zeyuan, Benetti Daniele, Montilla-Verdú Salvador, Chen Rong, Du Dongfeng, Lana-Villarreal Teresa, Aschauer Ulrich, Guijarro Néstor, Durrant James Robert, Luo Jingshan
Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
Institute of Electrochemistry, Universidad de Alicante, Apartat 99, E-03080 Alacant, Spain.
J Am Chem Soc. 2024 Dec 18;146(50):34681-34689. doi: 10.1021/jacs.4c13017. Epub 2024 Dec 4.
Photoelectrochemical (PEC) water splitting provides a promising strategy for H production. However, its performance is limited by severe carrier recombination and sluggish water oxidation kinetics. While numerous strategies, namely, elemental doping, morphology engineering, heterojunction formation, and catalyst modification, have been extensively explored to enhance the PEC performance, the application of external magnetic fields (MFs) to affect the catalysis or charge carrier dynamics remains yet to be exploited. Herein, BiVO is first selected as a representative photoanode, demonstrating that an ultrathin ferromagnetic coating based on FeTiO, when combined with an external MF, boosts its solar water oxidation performance. The combined analyses of the charge transfer and separation efficiency together with ultraviolet photoelectron spectroscopy and transient absorption spectroscopy data revealed that the MF positively affects the band alignment across the BiVO/FeTiO interface, improving the charge separation, while the oxygen evolution at the FeTiO/electrolyte interface was promoted. Finally, we expand this concept to other metal oxide photoanodes, such as TiO, WO, and FeO, demonstrating the universality of such an approach. Overall, this work pioneers a novel route to harvest external MFs and improve the PEC response of common nonmagnetic semiconductor photoelectrodes in photoelectrocatalytic conversion.
光电化学(PEC)水分解为制氢提供了一种很有前景的策略。然而,其性能受到严重的载流子复合和缓慢的水氧化动力学的限制。尽管已经广泛探索了多种策略,即元素掺杂、形貌工程、异质结形成和催化剂改性,以提高PEC性能,但利用外部磁场(MFs)来影响催化或电荷载流子动力学的应用仍有待开发。在此,首先选择BiVO作为代表性光阳极,证明基于FeTiO的超薄铁磁涂层与外部MF结合时,可提高其太阳能水氧化性能。通过对电荷转移和分离效率的综合分析以及紫外光电子能谱和瞬态吸收光谱数据表明,MF对BiVO/FeTiO界面的能带排列有积极影响,改善了电荷分离,同时促进了FeTiO/电解质界面处的析氧反应。最后,我们将这一概念扩展到其他金属氧化物光阳极,如TiO、WO和FeO,证明了这种方法的通用性。总的来说,这项工作开创了一条利用外部MFs并改善普通非磁性半导体光电极在光电催化转化中PEC响应的新途径。