Ahmed Mahmoud G, Kretschmer Imme E, Kandiel Tarek A, Ahmed Amira Y, Rashwan Farouk A, Bahnemann Detlef W
Department of Chemistry, Faculty of Science, Sohag University , Sohag 82524, Egypt.
Photocatalysis and Nanotechnology Research Unit, Institut für Technische Chemie, Leibniz Universität Hannover , Callinstrasse 3, D-30167 Hannover, Germany.
ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24053-62. doi: 10.1021/acsami.5b07065. Epub 2015 Oct 21.
The surface modification of semiconductor photoelectrodes with passivation overlayers has recently attracted great attention as an effective strategy to improve the charge-separation and charge-transfer processes across semiconductor-liquid interfaces. It is usually carried out by employing the sophisticated atomic layer deposition technique, which relies on reactive and expensive metalorganic compounds and vacuum processing, both of which are significant obstacles toward large-scale applications. In this paper, a facile water-based solution method has been developed for the modification of nanostructured hematite photoanode with TiO2 overlayers using a water-soluble titanium complex (i.e., titanium bis(ammonium lactate) dihydroxide, TALH). The thus-fabricated nanostructured hematite photoanodes have been characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Photoelectrochemical measurements indicated that a nanostructured hematite photoanodes modified with a TiO2 overlayer exhibited a photocurrent response ca. 4.5 times higher (i.e., 1.2 mA cm(-2) vs RHE) than that obtained on the bare hematite photoanode (i.e., 0.27 mA cm(-2) vs RHE) measured under standard illumination conditions. Moreover, a cathodic shift of ca. 190 mV in the water oxidation onset potential was achieved. These results are discussed and explored on the basis of steady-state polarization, transient photocurrent response, open-circuit potential, intensity-modulated photocurrent spectroscopy, and impedance spectroscopy measurements. It is concluded that the TiO2 overlayer passivates the surface states and suppresses the surface electron-hole recombination, thus increasing the generated photovoltage and the band bending. The present method for the hematite electrode modification with a TiO2 overlayer is effective and simple and might find broad applications in the development of stable and high-performance photoelectrodes.
用钝化覆盖层对半导体光电极进行表面改性,作为一种改善跨半导体 - 液体界面的电荷分离和电荷转移过程的有效策略,近来备受关注。这通常通过采用复杂的原子层沉积技术来实现,该技术依赖于反应性且昂贵的金属有机化合物以及真空处理,而这两者都是大规模应用的重大障碍。本文开发了一种简便的水基溶液法,使用水溶性钛络合物(即双(乳酸铵)二氢氧化钛,TALH)对纳米结构的赤铁矿光阳极进行TiO₂覆盖层改性。通过X射线衍射、扫描电子显微镜和X射线光电子能谱对由此制备的纳米结构赤铁矿光阳极进行了表征。光电化学测量表明,在标准光照条件下测量时,用TiO₂覆盖层改性的纳米结构赤铁矿光阳极的光电流响应(相对于可逆氢电极,RHE)比未改性的赤铁矿光阳极(即0.27 mA cm⁻² vs RHE)高约4.5倍(即1.2 mA cm⁻² vs RHE)。此外,水氧化起始电位实现了约190 mV的阴极偏移。基于稳态极化、瞬态光电流响应、开路电位、强度调制光电流光谱和阻抗光谱测量对这些结果进行了讨论和探究。得出的结论是,TiO₂覆盖层钝化了表面态并抑制了表面电子 - 空穴复合,从而增加了产生的光电压和能带弯曲。目前用TiO₂覆盖层对赤铁矿电极进行改性的方法有效且简单,可能在稳定和高性能光电极的开发中得到广泛应用。