Suppr超能文献

人类脑静脉血氧饱和度的无创光学定量分析。

Noninvasive optical quantification of cerebral venous oxygen saturation in humans.

作者信息

Lynch Jennifer M, Buckley Erin M, Schwab Peter J, Busch David R, Hanna Brian D, Putt Mary E, Licht Daniel J, Yodh Arjun G

机构信息

University of Pennsylvania, Department of Physics and Astronomy, 209 South 33rd St, Philadelphia, PA 19104.

Athinuola A. Martinos Center for Biomedical Imaging, The Optics Division, Charlestown, Massachusetts.

出版信息

Acad Radiol. 2014 Feb;21(2):162-7. doi: 10.1016/j.acra.2013.10.013.

Abstract

RATIONALE AND OBJECTIVES

Cerebral oxygen extraction, defined as the difference between arterial and venous oxygen saturations (SaO2 and SvO2), is a critical parameter for managing intensive care patients at risk for neurological collapse. Although quantification of SaO2 is easily performed with pulse oximetry or moderately invasive arterial blood draws in peripheral vessels, cerebral SvO2 is frequently not monitored because of the invasiveness and risk associated with obtaining jugular bulb or super vena cava (SVC) blood samples.

MATERIALS AND METHODS

In this study, near-infrared spectroscopy (NIRS) was used to noninvasively measure cerebral SvO2 in anesthetized and mechanically ventilated pediatric patients (n = 10). To quantify SvO2, the NIRS signal component that fluctuates at the respiration frequency is isolated. This respiratory component is dominated by the venous portion of the interrogated vasculature. The NIRS measurements of SvO2 were validated against the clinical gold standard: invasively measured oxygen saturations from SVC blood samples. This technique was also applied in healthy volunteers (n = 5) without mechanical ventilation to illustrate its potential for use in healthy populations with natural airways.

RESULTS

Ten pediatric patients with pulmonary hypertension were studied. In these patients, SvO2 in the SVC exhibited good agreement with NIRS-measured SvO2 (R(2) = 0.80, P = .001, slope = 1.16 ± 0.48). Furthermore, in the healthy adult volunteers, mean (standard deviation) NIRS-measured SvO2 was 79.4 (6.8)%. This value is in good agreement with the expected average central venous saturation reported in literature.

CONCLUSION

Respiration frequency-selected NIRS can noninvasively quantify cerebral SvO2. This bedside technique can be used to help assess brain health in neurologically unstable patients.

摘要

原理与目的

脑氧摄取定义为动脉血氧饱和度(SaO2)与静脉血氧饱和度(SvO2)之差,是管理有神经功能衰竭风险的重症监护患者的关键参数。虽然通过脉搏血氧饱和度测定法或在外周血管进行适度侵入性的动脉采血可轻松实现SaO2的定量,但由于获取颈静脉球或上腔静脉(SVC)血样具有侵入性且存在风险,脑SvO2常常未得到监测。

材料与方法

在本研究中,近红外光谱(NIRS)被用于在麻醉和机械通气的儿科患者(n = 10)中无创测量脑SvO2。为了定量SvO2,分离出在呼吸频率下波动的NIRS信号成分。该呼吸成分主要由被检测血管系统的静脉部分主导。通过临床金标准对NIRS测量的SvO2进行验证:即通过侵入性方法测量SVC血样中的血氧饱和度。该技术还应用于无机械通气的健康志愿者(n = 5),以说明其在具有自然气道的健康人群中的应用潜力。

结果

对10例患有肺动脉高压的儿科患者进行了研究。在这些患者中,SVC中的SvO2与NIRS测量的SvO2表现出良好的一致性(R(2) = 0.80,P = 0.001,斜率 = 1.16 ± 0.48)。此外,在健康成年志愿者中,NIRS测量的SvO2平均值(标准差)为79.4(6.8)%。该值与文献报道的预期平均中心静脉饱和度良好一致。

结论

呼吸频率选择的NIRS可无创定量脑SvO2。这种床边技术可用于帮助评估神经功能不稳定患者的脑健康状况。

相似文献

1
Noninvasive optical quantification of cerebral venous oxygen saturation in humans.
Acad Radiol. 2014 Feb;21(2):162-7. doi: 10.1016/j.acra.2013.10.013.
5
Non-invasive assessment of cerebral oxygenation: A comparison of retinal and transcranial oximetry.
PLoS One. 2018 Jan 5;13(1):e0190612. doi: 10.1371/journal.pone.0190612. eCollection 2018.
6
T-prepared velocity selective labelling: A novel idea for full-brain mapping of oxygen saturation.
Neuroimage. 2016 Oct 1;139:65-73. doi: 10.1016/j.neuroimage.2016.06.012. Epub 2016 Jun 9.
7
8
Arterial and venous contributions to near-infrared cerebral oximetry.
Anesthesiology. 2000 Oct;93(4):947-53. doi: 10.1097/00000542-200010000-00012.
9
Validation of the CAS neonatal NIRS system by monitoring vv-ECMO patients: preliminary results.
Adv Exp Med Biol. 2005;566:195-201. doi: 10.1007/0-387-26206-7_27.

引用本文的文献

2
4
Validation of the Masimo O3™ regional oximetry device in pediatric patients undergoing cardiac surgery.
J Clin Monit Comput. 2022 Dec;36(6):1703-1709. doi: 10.1007/s10877-022-00815-3. Epub 2022 Feb 15.
6
Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant.
Nat Biotechnol. 2021 Jul;39(7):855-864. doi: 10.1038/s41587-021-00866-y. Epub 2021 Mar 29.
7
Noncontact optical imaging of brain hemodynamics in preterm infants: a preliminary study.
Phys Med Biol. 2020 Dec 22;65(24):245009. doi: 10.1088/1361-6560/abc5a7.
8
Noninvasive optical measurement of microvascular cerebral hemodynamics and autoregulation in the neonatal ECMO patient.
Pediatr Res. 2020 Dec;88(6):925-933. doi: 10.1038/s41390-020-0841-6. Epub 2020 Mar 14.
9
Influence of intra-abdominal pressure on the amplitude of fluctuations of cerebral hemoglobin concentration in the respiratory band.
Biomed Opt Express. 2019 Jun 19;10(7):3434-3446. doi: 10.1364/BOE.10.003434. eCollection 2019 Jul 1.

本文引用的文献

1
Diffuse Optics for Tissue Monitoring and Tomography.
Rep Prog Phys. 2010 Jul;73(7). doi: 10.1088/0034-4885/73/7/076701.
3
NIRS measurement of venous oxygen saturation in the adult human head.
Adv Exp Med Biol. 2006;578:251-6. doi: 10.1007/0-387-29540-2_40.
5
Complications of central venous catheters: internal jugular versus subclavian access--a systematic review.
Crit Care Med. 2002 Feb;30(2):454-60. doi: 10.1097/00003246-200202000-00031.
6
Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects.
J Appl Physiol (1985). 2002 Jan;92(1):372-84. doi: 10.1152/jappl.2002.92.1.372.
7
Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy.
J Biomed Opt. 2000 Apr;5(2):155-62. doi: 10.1117/1.429982.
8
Cerebral monitoring: jugular venous oximetry.
Anesth Analg. 2000 Mar;90(3):559-66. doi: 10.1097/00000539-200003000-00012.
9
Near infrared spectroscopy.
Br J Anaesth. 1999 Mar;82(3):418-26. doi: 10.1093/bja/82.3.418.
10
Intravascular-catheter-related infections.
Lancet. 1998 Mar 21;351(9106):893-8. doi: 10.1016/S0140-6736(97)10006-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验