Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
Infectious Disease Research Institute, Seattle, WA, USA.
Tuberculosis (Edinb). 2014 Mar;94(2):162-9. doi: 10.1016/j.tube.2013.12.001. Epub 2013 Dec 19.
The search for compounds active against Mycobacterium tuberculosis is reliant upon high-throughput screening (HTS) in whole cells. We have used Bayesian machine learning models which can predict anti-tubercular activity to filter an internal library of over 150,000 compounds prior to in vitro testing. We used this to select and test 48 compounds in vitro; 11 were active with MIC values ranging from 0.4 μM to 10.2 μM, giving a high hit rate of 22.9%. Among the hits, we identified several compounds belonging to the same series including five quinolones (including ciprofloxacin), three molecules with long aliphatic linkers and three singletons. This approach represents a rapid method to prioritize compounds for testing that can be used alongside medicinal chemistry insight and other filters to identify active molecules. Such models can significantly increase the hit rate of HTS, above the usual 1% or lower rates seen. In addition, the potential targets for the 11 molecules were predicted using TB Mobile and clustering alongside a set of over 740 molecules with known M. tuberculosis target annotations. These predictions may serve as a mechanism for prioritizing compounds for further optimization.
寻找对抗结核分枝杆菌的化合物依赖于全细胞高通量筛选(HTS)。我们使用了贝叶斯机器学习模型,可以预测抗结核活性,以便在体外测试之前筛选超过 150,000 种化合物的内部库。我们使用该模型选择并测试了 48 种化合物,其中 11 种具有 0.4 μM 至 10.2 μM 的 MIC 值,显示出 22.9%的高命中率。在这些命中化合物中,我们鉴定了几种属于同一系列的化合物,包括五种喹诺酮类化合物(包括环丙沙星)、三种具有长脂肪族连接子的分子和三种单体。这种方法代表了一种快速的方法,可以优先选择用于测试的化合物,与药物化学见解和其他筛选方法结合使用,可以识别出活性分子。这种模型可以显著提高 HTS 的命中率,高于通常看到的 1%或更低的命中率。此外,使用 TB Mobile 预测了这 11 种分子的潜在靶标,并与一组超过 740 种具有已知结核分枝杆菌靶标注释的分子进行聚类。这些预测可以作为进一步优化化合物的优先级的机制。