Suppr超能文献

贝叶斯模型用于筛查,TB Mobile 用于结核分枝杆菌的靶标推断。

Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis.

机构信息

Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.

Infectious Disease Research Institute, Seattle, WA, USA.

出版信息

Tuberculosis (Edinb). 2014 Mar;94(2):162-9. doi: 10.1016/j.tube.2013.12.001. Epub 2013 Dec 19.

Abstract

The search for compounds active against Mycobacterium tuberculosis is reliant upon high-throughput screening (HTS) in whole cells. We have used Bayesian machine learning models which can predict anti-tubercular activity to filter an internal library of over 150,000 compounds prior to in vitro testing. We used this to select and test 48 compounds in vitro; 11 were active with MIC values ranging from 0.4 μM to 10.2 μM, giving a high hit rate of 22.9%. Among the hits, we identified several compounds belonging to the same series including five quinolones (including ciprofloxacin), three molecules with long aliphatic linkers and three singletons. This approach represents a rapid method to prioritize compounds for testing that can be used alongside medicinal chemistry insight and other filters to identify active molecules. Such models can significantly increase the hit rate of HTS, above the usual 1% or lower rates seen. In addition, the potential targets for the 11 molecules were predicted using TB Mobile and clustering alongside a set of over 740 molecules with known M. tuberculosis target annotations. These predictions may serve as a mechanism for prioritizing compounds for further optimization.

摘要

寻找对抗结核分枝杆菌的化合物依赖于全细胞高通量筛选(HTS)。我们使用了贝叶斯机器学习模型,可以预测抗结核活性,以便在体外测试之前筛选超过 150,000 种化合物的内部库。我们使用该模型选择并测试了 48 种化合物,其中 11 种具有 0.4 μM 至 10.2 μM 的 MIC 值,显示出 22.9%的高命中率。在这些命中化合物中,我们鉴定了几种属于同一系列的化合物,包括五种喹诺酮类化合物(包括环丙沙星)、三种具有长脂肪族连接子的分子和三种单体。这种方法代表了一种快速的方法,可以优先选择用于测试的化合物,与药物化学见解和其他筛选方法结合使用,可以识别出活性分子。这种模型可以显著提高 HTS 的命中率,高于通常看到的 1%或更低的命中率。此外,使用 TB Mobile 预测了这 11 种分子的潜在靶标,并与一组超过 740 种具有已知结核分枝杆菌靶标注释的分子进行聚类。这些预测可以作为进一步优化化合物的优先级的机制。

相似文献

引用本文的文献

2
Advances in computational frameworks in the fight against TB: The way forward.抗击结核病计算框架的进展:前进之路。
Front Pharmacol. 2023 Apr 3;14:1152915. doi: 10.3389/fphar.2023.1152915. eCollection 2023.
3
Mycobacterium abscessus drug discovery using machine learning.利用机器学习发现脓肿分枝杆菌药物。
Tuberculosis (Edinb). 2022 Jan;132:102168. doi: 10.1016/j.tube.2022.102168. Epub 2022 Jan 20.
4
Machine Learning Models for Activity: Prediction and Target Visualization.活动的机器学习模型:预测和目标可视化。
Mol Pharm. 2022 Feb 7;19(2):674-689. doi: 10.1021/acs.molpharmaceut.1c00791. Epub 2021 Dec 29.
5
Recent advances in drug repurposing using machine learning.基于机器学习的药物重定位的最新进展。
Curr Opin Chem Biol. 2021 Dec;65:74-84. doi: 10.1016/j.cbpa.2021.06.001. Epub 2021 Jul 16.
7
Molecule Property Analyses of Active Compounds for .针对. 的活性化合物的分子性质分析
J Med Chem. 2020 Sep 10;63(17):8917-8955. doi: 10.1021/acs.jmedchem.9b02075. Epub 2020 Apr 20.

本文引用的文献

5
Computational models for tuberculosis drug discovery.用于结核病药物发现的计算模型。
Methods Mol Biol. 2013;993:245-62. doi: 10.1007/978-1-62703-342-8_16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验