Suppr超能文献

轻度认知障碍和阿尔茨海默病中皮质下及脑室结构的形态异常:检测、量化与预测

Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting.

作者信息

Tang Xiaoying, Holland Dominic, Dale Anders M, Younes Laurent, Miller Michael I

机构信息

Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Hum Brain Mapp. 2014 Aug;35(8):3701-25. doi: 10.1002/hbm.22431. Epub 2014 Jan 17.

Abstract

This article assesses the feasibility of using shape information to detect and quantify the subcortical and ventricular structural changes in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. We first demonstrate structural shape abnormalities in MCI and AD as compared with healthy controls (HC). Exploring the development to AD, we then divide the MCI participants into two subgroups based on longitudinal clinical information: (1) MCI patients who remained stable; (2) MCI patients who converted to AD over time. We focus on seven structures (amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral ventricles) in 754 MR scans (210 HC, 369 MCI of which 151 converted to AD over time, and 175 AD). The hippocampus and amygdala were further subsegmented based on high field 0.8 mm isotropic 7.0T scans for finer exploration. For MCI and AD, prominent ventricular expansions were detected and we found that these patients had strongest hippocampal atrophy occurring at CA1 and strongest amygdala atrophy at the basolateral complex. Mild atrophy in basal ganglia structures was also detected in MCI and AD. Stronger atrophy in the amygdala and hippocampus, and greater expansion in ventricles was observed in MCI converters, relative to those MCI who remained stable. Furthermore, we performed principal component analysis on a linear shape space of each structure. A subsequent linear discriminant analysis on the principal component values of hippocampus, amygdala, and ventricle leads to correct classification of 88% HC subjects and 86% AD subjects.

摘要

本文评估了利用形状信息检测和量化轻度认知障碍(MCI)和阿尔茨海默病(AD)患者皮质下和脑室结构变化的可行性。我们首先证明了与健康对照(HC)相比,MCI和AD患者存在结构形状异常。为了探究向AD的发展情况,我们根据纵向临床信息将MCI参与者分为两个亚组:(1)病情保持稳定的MCI患者;(2)随时间推移转化为AD的MCI患者。我们聚焦于754例磁共振扫描中的七个结构(杏仁核、海马体、丘脑、尾状核、壳核、苍白球和侧脑室)(210例HC、369例MCI,其中151例随时间推移转化为AD,以及175例AD)。基于0.8毫米各向同性7.0T高场扫描对海马体和杏仁核进行了进一步细分,以进行更精细的探究。对于MCI和AD患者,检测到明显的脑室扩张,并且我们发现这些患者海马体萎缩最严重的部位在CA1,杏仁核萎缩最严重的部位在基底外侧复合体。在MCI和AD患者中也检测到基底神经节结构存在轻度萎缩。相对于病情保持稳定的MCI患者,MCI转化者的杏仁核和海马体萎缩更严重,脑室扩张更明显。此外,我们对每个结构的线性形状空间进行了主成分分析。随后对海马体、杏仁核和脑室的主成分值进行线性判别分析,正确分类了88%的HC受试者和86%的AD受试者。

相似文献

引用本文的文献

本文引用的文献

10
A bayesian generative model for surface template estimation.用于表面模板估计的贝叶斯生成模型。
Int J Biomed Imaging. 2010;2010. doi: 10.1155/2010/974957. Epub 2010 Sep 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验